Processing math: 0%
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. math exams: August 2011

Tuesday, August 30, 2011

PCAT Quantitative Practice Questions -8

Pharmacy College Admission Test

    1. Evaluate the expression: 1000(2^{-1.5})

      1. 2828,427
      2. 2000.00
      3. 353.55
      4. 3000

    2. Evaluate the expression: \log_{49}7

      1. \frac{1}{4}
      2. \frac{1}{2}
      3. \frac{2}{5}
      4. \frac{1}{49}

    3. Place into standard form: (5+i)-(7-7i)

      1. -2+8i
      2. 2+8i
      3. 12+8i
      4. -2+6i

    4. Find the domaine of the function: f(x)=\sqrt{-6x+12}

      1. x \geq 3
      2. x \leq -2
      3. x \leq -1
      4. x \leq 2

    5. What is the value of: 3\ln e^{6}

      1. 6
      2. 18
      3. 9
      4. 12

    6. What is the value of: \csc (150 deg)

      1. 1
      2. -1
      3. -2
      4. 2

    7. Solve the equation: x^{2}-10x+50=0

      1. 5+5i or 5-5i
      2. 2+5i or 2-5i
      3. 4+5i or 4-5i
      4. 1+5i or 1-5i

    8. What is the value of x: \log_{10}x=-3

      1. 0.01
      2. 0.001
      3. 0.1
      4. 1

    9. Factor the expression: x^{2}-3ix-2

      1. (x+i)(x+2i)
      2. (x+i)(x-2i)
      3. (x-i)(x-2i)
      4. (-x-i)(x-2i)

    10. Identify the horizontal and vertical asymptotes for: \frac{5x^{2}}{x^{2}-9}

      1. y=5, x=-3, x=3
      2. y=-5, x=-3
      3. y=5, x=3
      4. y=5, x=-3
    11. Answer Key
      1 C
      2 B
      3 A
      4 D
      5 B
      6 D
      7 A
      8 B
      9 C
      10 A

PCAT Quantitative Practice Questions -7

Pharmacy College Admission Test

  1. For how many positive integers, n, is true that n^{2} \leq 3n

    1. 2
    2. 3
    3. 4
    4. 5

  2. If a^{4}=16, then 3^{a}

    1. 3
    2. 9
    3. 16
    4. 27

  3. \sqrt{20}\sqrt{5}=

    1. 2\sqrt{5}
    2. 10
    3. 4\sqrt{5}
    4. 5\sqrt{10}


  4. The sum of three positive consecutive even integers is x.
    What is the value of the middle of the three integers?

    1. \frac{x}{3}+2
    2. 3x
    3. \frac{x-2}{3}
    4. \frac{x}{3}

  5. What is the average of 5^{10}, 5^{20}, 5^{30}, 5^{40} and 5^{50}?

    1. 5^{9}+5^{19}+5^{29}+5^{39}+5^{49}
    2. 5^{30}
    3. 5^{149}
    4. 150

  6. Which of the following is equal to (5^{6} \times 5^{9})^{10}?

    1. 25^{150}
    2. 25^{540}
    3. 5^{540}
    4. 5^{150}

  7. What is the value of 3^{\frac{1}{3}} \times 3^{\frac{2}{3}} \times 3^{\frac{3}{3}}?

    1. 3
    2. 9
    3. 27
    4. 30

  8. How many integers satisfy the inequality |x| < 2 \pi.

    1. 3


    2. 4


    3. 7


    4. More than 7


  9. What is the average of 5^{a} \times 5^{b}=5^{300}

    1. 50
    2. 100
    3. 150
    4. 200

  10. If 5^{a}5^{b}=\frac{5^{c}}{5^{d}}, what is d in terms of a, b and c?

    1. \frac{c}{a+b}
    2. c+ab
    3. c-a-b
    4. c+a-b
    Answer Key
    1 B
    2 B
    3 B
    4 D
    5 A
    6 D
    7 B
    8 D
    9 C
    10 C

PCAT Quantitative Practice Questions -6

Pharmacy College Admission Test

  1. Which of the following is equivalent to 5^{9}

    1. 5^{4}+5^{4}+5^{1}
    2. 5^{2} \times 5^{4} \times 5^{3}
    3. \frac{10^{9}}{2^{10}}
    4. (5^{4})^{5}

  2. Which of the following is equivalent to \sqrt{289}

    1. 14
    2. 15
    3. 16
    4. 17

  3. Which of the following is a perfect square?

    1. 120
    2. 121
    3. 122
    4. 123

  4. Which of the following is equivalent to 3\sqrt{10}

    1. 3\sqrt{5} \times \sqrt{5}
    2. \sqrt{90}
    3. 3\sqrt{5} + 3\sqrt{2}
    4. 3\sqrt{5}+3\sqrt{5}

  5. Which of the following is equivalent to 10^{\frac{2}{5}}

    1. \sqrt[5]{5}
    2. \sqrt[5]{10}
    3. \sqrt[5]{20}
    4. \sqrt[5]{100}

  6. Which of the following fractions is equivalent to \frac{3}{6} \times \frac{2}{5}?

    1. \frac{6}{30}
    2. \frac{5}{30}
    3. \frac{5}{11}
    4. \frac{15}{12}

  7. Which of the following expressions is equivalent to \frac{7}{6} \div \frac{5}{2}?

    1. \frac{9}{6}+\frac{9}{5}
    2. \frac{7}{8}+\frac{5}{8}
    3. \frac{7}{6}+\frac{2}{5}
    4. \frac{1}{7}+\frac{2}{35}

  8. If 3^{x}=729, what is x^{3}?

  9. What is the value of ||4|-|-7||

    1. -11
    2. -3
    3. 0
    4. 3

  10. What is the value of (\sqrt{3}+\sqrt{5})^{2}-(\sqrt{8})^{2}

    1. 2\sqrt{15}
    2. \sqrt{15}
    3. 0
    4. 15

    Answer Key
    1 B
    2 D
    3 B
    4 B
    5 D
    6 A
    7 D
    8 125
    9 D
    10 A

PCAT Quantitative Practice Questions -5

Pharmacy College Admission Test

  1. Solve 15x-32=18-10x

    1. -14
    2. 10
    3. 14
    4. 2

  2. Solve \frac{x}{8}=\frac{x-2}{4}

    1. 12
    2. 4
    3. 6
    4. -\frac{1}{2}

  3. Which of the following are the factors of t^{2}+8t+16

    1. (t-8)(t-2)
    2. (t+8)(t+2)
    3. (t+1)(t+16)
    4. (t+4)(t+4)

  4. Solve for a in term of b, if 6a+12b=24

    1. 24-12b
    2. 2-\frac{1}{2}b
    3. 4-2b
    4. 24-18b

  5. If ax+2b=5c-dx, what does x equal in terms of a, b, c, and d?

    1. a-d
    2. (5c-2b)(a-d)
    3. \frac{5c-d-2b}{a}
    4. \frac{5c-2b}{a-d}

  6. If (z-9)(z+3)=0, what are the two possible values of z?

    1. z=-9 abd z=3
    2. z=9 abd z=0
    3. z=0 abd z=-3
    4. z=9 abd z=-3

  7. If z^{2}-6z=16, which of the following could be a value of z^{2}+6z?

    1. -8
    2. 112
    3. 110
    4. 18

  8. If 3\sqrt{ a}-10=2, what is the value of a?

    1. 16
    2. 4
    3. 32
    4. 64

  9. Given \frac{(x+6)(x^{2}-2x-3)}{x^{2}+3x-18}=10, find the value of x.

    1. 18
    2. 4
    3. 12
    4. 9

  10. Solve the equation \frac{5x}{8}-\frac{3x}{5}=2.

    1. 40
    2. 80
    3. 160
    4. -80

    Answer Key
    1 D
    2 B
    3 D
    4 C
    5 D
    6 D
    7 B
    8 A
    9 D
    10 B

PCAT Quantitative Practice Questions -4

Pharmacy College Admission Test

  1. 2(5x-5)+5(2x+2)=
    1. 0
    2. 20x
    3. 20x-10
    4. 20x+10

  2. If x=a+2, and y=-8-a then x+y=

    1. 10
    2. 2a-6
    3. -10
    4. -6

  3. If x \ne -5, then \frac{x^{2}+3x-10}{x+5}-(x-2)=

  4. If (a-\frac{1}{a})^{2}=8, then a^{2}+\frac{1}{a^{2}}=

    1. 8
    2. 6
    3. 10
    4. 12

  5. (x+y)^{2}=16, and x^{2}+y^{2}=6 then xy=

    1. 5
    2. 10
    3. 6
    4. 4

  6. (x+y)=2, and x^{2}-y^{2}=6 then x-y=

    1. 12
    2. 4
    3. 6
    4. \frac{1}{3}

  7. \frac{15y+3}{3}-5y=

    1. 1
    2. 0
    3. 10y+1
    4. 3


  8. if b^{2}-a^{2}=9 then 5(a-b)(a+b)=

    1. \frac{9}{5}
    2. 4
    3. 50
    4. -45

  9. When c \ne 3, then \frac{c^{2}-9}{c-3}=

    1. c-3
    2. 1
    3. c+3
    4. 3-c

  10. If b>0, and b^{2}-1=10 \times 12, then b=

    1. 1
    2. 12
    3. 10
    4. 11


    Answer Key
    1 B
    2 D
    3 0
    4 C
    5 A
    6 D
    7 A
    8 D
    9 C
    10 D

PCAT Quantitative Practice Questions -3

Pharmacy College Admission Test

  1. If 3x+7=5x+1

    1. 2.5
    2. 3.5
    3. 4
    4. 3

  2. What is the next term in the sequence: 6, 3, 10, 7, 14, 11, ...?

    1. 15
    2. 6
    3. 17
    4. 18

  3. The area of the basis of Cylinder A is 8 times the area of the basis of Cylinder B. What is the radius of Cylinder A in terms of the radius of Cylinder B?

    1. r_{A}=\frac{r_{B}}{8}
    2. r_{A}=8r_{B}
    3. r_{A}=4r_{B}
    4. r_{A}=2\sqrt{2}r_{B}

  4. If x^{2}-2xy+y^{2}=121, x-y=

    1. 10
    2. 11
    3. 12
    4. 13

  5. If c is equal to the sum b and twice of a, which of the following is the average of b and c?

    1. a
    2. b
    3. c
    4. a+b

  6. f(x)=4x+8, f(c+3)=8, f(c)=

    1. -8
    2. 0
    3. 3
    4. 8

  7. 5^{n}.125^{m}=78,125, n+3m=

    1. 5
    2. 6
    3. 7
    4. 8

  8. \frac{3b^{2}}{a^{3}}=27a^{2}

    1. 9a^{3}
    2. \frac{1}{9a^{3}}
    3. \frac{1}{a^{3}}
    4. \frac{1}{3a^{3}}

  9. Which of the following statements must be true about the x and y coordinates that satisfy the equation ay-ax=0, a \ne 0, x \ne 0 ,y \ne 0

    1. xy=1
    2. x=-y
    3. y>x
    4. x=y

  10. What is the length of the side of a cube whose volume is 125 cubic units?

    1. 4
    2. 5
    3. 6
    4. 7
    Answer Key
    1 D
    2 D
    3 D
    4 B
    5 D
    6 D
    7 C
    8 D
    9 D
    10 B

PCAT Quantitative Practice Questions -2

Pharmacy College Admission Test

  1. If \frac{1}{2} of a number is 3, what is \frac{1}{3} of the number?

    1. 1
    2. 2
    3. 3
    4. 6

  2. If x=-1, then x^{5}+x^{4}+x^{3}+x^{2}-5=

    1. -10
    2. -6
    3. -5
    4. -3

  3. If f(x)=2^{x}+7x, then f(4)=

    1. 24
    2. 36
    3. 44
    4. 54

  4. If x-3=y, then (y-x)^{3}=

    1. 27
    2. 54
    3. -54
    4. -27

  5. If a>b, and \frac{a}{b}>0, which of the following is true?

    1. a>0
    2. b>0
    3. ab>0

    1. I only
    2. II only
    3. III only
    4. I and II only

  6. Which of the following is equal to (\frac{x^{-7}y^{-5}}{x^{-3}y^{3}})^{-2}

    1. x^{8}y^{16}
    2. \frac{x^{8}}{y^{16}}
    3. \frac{y^{16}}{x^{8}}
    4. x^{4}y^{8}


  7. What is the slope of the line passing through the points (-1,7) and (3,5)?

    1. \frac{1}{2}
    2. -2
    3. -\frac{1}{2}
    4. 1

  8. The symbol \otimes represents a binary operation defined as a \otimes b=3^{a}+2^{b}, what is the value of (-2)\otimes (-3)

    1. \frac{72}{17}
    2. -72
    3. 72
    4. \frac{17}{72}

  9. If \sqrt{\frac{49}{x}}=\frac{7}{3}

    1. 6
    2. 9
    3. 25
    4. 49

  10. A bike that originally sold for 150 \$ was on sale for 120 \$. What was the rate of discount?

    1. 15 \%
    2. 21 \%
    3. 20 \%
    4. 25 \%

    Answer Key
    1 B
    2 C
    3 C
    4 D
    5 C
    6 A
    7 C
    8 D
    9 B
    10 C

PCAT Quantitative Practice Questions -1

Pharmacy College Admission Test

  1. If 0.10 < x < 0.12, which of the following could be a value of x?

    1. 9 \%
    2. 10 \%
    3. 11 \%
    4. 12 \%

  2. If \frac{xyz}{t}=w and x and t are doubled, what happens to the value of w



    1. The value of w is halved.
    2. The value of w is four times greater.
    3. The value of w is doubled
    4. The value of w remains the same.

  3. What is the tenth term of the pattern below?
    \frac{3}{2}, \frac{9}{4}, \frac{27}{8}, \frac{81}{16},...

    1. \frac{3}{2^{10}}
    2. \frac{30}{20}
    3. (\frac{3}{2})^{10}
    4. \frac{3^{10}}{2}

  4. If a > 0 and b < 0, which of the following is always negative?

    1. -ab
    2. a+b
    3. |a|-|b|
    4. \frac{a}{b}

  5. Which of the following number pairs is in the ratio 3:7?

    1. \frac{1}{3},\frac{1}{7}
    2. \frac{1}{7},\frac{1}{3}
    3. \frac{1}{7},\frac{3}{7}
    4. 7,\frac{1}{3}

  6. If x=-\frac{1}{4}, then (-x)^{-3}+(\frac{1}{x})^{2}=

    1. -64
    2. 16
    3. 64
    4. 80

  7. For which of the following values of x is the relationship x < x^{2} < x^{3} true?

    1. -3
    2. -\frac{2}{3}
    3. 0
    4. \frac{2}{3}

  8. x^{2}+2xy+y^{2}=169, -|-(x+y)|=

  9. How many distincts factors does 900 have?

    1. 2
    2. 3
    3. 4
    4. 5

  10. If x=-\frac{1}{7}, then which of the following is always positive for n > 0?

    1. x^{n}
    2. n^{x}
    3. nx
    4. n-x


    Answer Key
    1 C
    2 D
    3 C
    4 D
    5 B
    6 D
    7 3
    8 -13
    9 B
    10 B

Monday, August 15, 2011

CLEP Precalculus Practice Questions - Algebra review

  1. Factor 3a^{2}+3ab-6b^{2}
  2. Factor x^{3}-4x^{2}+2x-8
  3. Factor 25a^{2}-36b^{2}
  4. Resolve into factors x^{2}-ax+bx-ab
  5. Resolve into factors 6x^{2}-9ax+4bx-6ab
  6. Resolve into factors x^{2}+11x+24
  7. Resolve into factors x^{2}-10x+24
  8. Resolve into factors x^{2}-10ax+10a^{2}

Monday, August 1, 2011

CLEP College Algebra Practice Questions - 12 & Answer Key

  1. Which of the following is equivalent to 5^{9}

    1. 5^{4}+5^{4}+5^{1}
    2. 5^{2} \times 5^{4} \times 5^{3}
    3. \frac{10^{9}}{2^{10}}
    4. (5^{4})^{5}
    5. \frac{5^{5}}{5^{4}}

  2. Which of the following is equivalent to \sqrt{289}

    1. 14
    2. 15
    3. 16
    4. 17
    5. 18

  3. Which of the following is a perfect square?

    1. 120
    2. 121
    3. 122
    4. 123
    5. 124

  4. Which of the following is equivalent to 3\sqrt{10}

    1. 3\sqrt{5} \times \sqrt{5}
    2. \sqrt{90}
    3. 3\sqrt{5} + 3\sqrt{2}
    4. 3\sqrt{5}+3\sqrt{5}
    5. \frac{3\sqrt{2}}{\sqrt{5}}

  5. Which of the following is equivalent to 10^{\frac{2}{5}}

    1. \sqrt[5]{5}
    2. \sqrt[5]{10}
    3. \sqrt[5]{20}
    4. \sqrt[5]{100}
    5. \sqrt[5]{1000}

  6. Which of the following fractions is equivalent to \frac{3}{6} \times \frac{2}{5}?

    1. \frac{6}{30}
    2. \frac{5}{30}
    3. \frac{5}{11}
    4. \frac{15}{12}
    5. \frac{9}{30}

  7. Which of the following expressions is equivalent to \frac{7}{6} \div \frac{5}{2}?

    1. \frac{7}{30}+\frac{2}{30}
    2. \frac{9}{6}+\frac{9}{5}
    3. \frac{7}{8}+\frac{5}{8}
    4. \frac{7}{6}+\frac{2}{5}
    5. \frac{1}{7}+\frac{2}{35}

  8. If 3^{x}=729, what is x^{3}?

  9. What is the value of ||4|-|-7||

    1. -11
    2. -3
    3. 0
    4. 3
    5. 11

  10. What is the value of (\sqrt{3}+\sqrt{5})^{2}-(\sqrt{8})^{2}

    1. 2\sqrt{15}
    2. \sqrt{15}
    3. 0
    4. 15
    5. 30

    Answer Key
    1 B
    2 D
    3 B
    4 B
    5 D
    6 A
    7 E
    8 125
    9 D
    10 A

CLEP College Algebra Practice Questions - 11 & Answer Key

  1. Solve 15x-32=18-10x

    1. -14
    2. 10
    3. 14
    4. 2
    5. 50

  2. Solve \frac{x}{8}=\frac{x-2}{4}

    1. 12
    2. 4
    3. 6
    4. -\frac{1}{2}
    5. -6

  3. Which of the following are the factors of t^{2}+8t+16

    1. (t-4)(t-4)
    2. (t-8)(t-2)
    3. (t+8)(t+2)
    4. (t+1)(t+16)
    5. (t+4)(t+4)

  4. Solve for a in term of b, if 6a+12b=24

    1. 24-12b
    2. 2-\frac{1}{2}b
    3. 4-2b
    4. 24-18b
    5. 2b-4

  5. If ax+2b=5c-dx, what does x equal in terms of a, b, c, and d?

    1. 5c-d-2b-a
    2. a-d
    3. (5c-2b)(a-d)
    4. \frac{5c-d-2b}{a}
    5. \frac{5c-2b}{a-d}

  6. If (z-9)(z+3)=0, what are the two possible values of z?

    1. z=-9 abd z=3
    2. z=9 abd z=0
    3. z=0 abd z=-3
    4. z=9 abd z=-3
    5. z=-12 abd z=12

  7. If z^{2}-6z=16, which of the following could be a value of z^{2}+6z?

    1. -8
    2. 112
    3. 110
    4. 18
    5. 108

  8. If 3\sqrt{ a}-10=2, what is the value of a?

    1. 16
    2. 4
    3. 32
    4. 64
    5. 12

  9. Given \frac{(x+6)(x^{2}-2x-3)}{x^{2}+3x-18}=10, find the value of x.

    1. 18
    2. 4
    3. 12
    4. 9
    5. 12

  10. Solve the equation \frac{5x}{8}-\frac{3x}{5}=2.

    1. 40
    2. 80
    3. 160
    4. -80
    5. 20

    Answer Key
    1 D
    2 B
    3 E
    4 C
    5 E
    6 D
    7 B
    8 A
    9 D
    10 B

CLEP College Algebra Practice Questions - 10 & Answer Key

  1. 2(5x-5)+5(2x+2)=
    1. 0
    2. 20x
    3. 20x-10
    4. 20x+10
    5. 10x^{2}+20+x+20

  2. If x=a+2, and y=-8-a then x+y=

    1. 6
    2. 10
    3. 2a-6
    4. -10
    5. -6

  3. If x \ne -5, then \frac{x^{2}+3x-10}{x+5}-(x-2)=

  4. If (a-\frac{1}{a})^{2}=8, then a^{2}+\frac{1}{a^{2}}=

    1. 8
    2. 6
    3. 10
    4. 12
    5. 100

  5. (x+y)^{2}=16, and x^{2}+y^{2}=6 then xy=

    1. 5
    2. 10
    3. 6
    4. 4
    5. 16

  6. (x+y)=2, and x^{2}-y^{2}=6 then x-y=

    1. 12
    2. 4
    3. 6
    4. \frac{1}{3}
    5. 3

  7. \frac{15y+3}{3}-5y=

    1. 1
    2. 0
    3. 10y+1
    4. 3
    5. 3y+1


  8. if b^{2}-a^{2}=9 then 5(a-b)(a+b)=

    1. 45
    2. \frac{9}{5}
    3. 4
    4. 50
    5. -45

  9. When c \ne 3, then \frac{c^{2}-9}{c-3}=

    1. c-3
    2. 1
    3. c+3
    4. 3-c
    5. o

  10. If b>0, and b^{2}-1=10 \times 12, then b=

    1. 9
    2. 1
    3. 12
    4. 10
    5. 11


    Answer Key
    1 B
    2 E
    3 0
    4 C
    5 A
    6 D
    7 A
    8 E
    9 C
    10 E

CLEP College Algebra Practice Questions - 9 & Answer Key

  1. If 3x+7=5x+1

    1. 2.5
    2. 3.5
    3. 4
    4. 3
    5. 4.5

  2. What is the next term in the sequence: 6, 3, 10, 7, 14, 11, ...?

    1. 19
    2. 15
    3. 6
    4. 17
    5. 18

  3. The area of the basis of Cylinder A is 8 times the area of the basis of Cylinder B. What is the radius of Cylinder A in terms of the radius of Cylinder B?

    1. r_{A}=\frac{r_{B}}{8}
    2. r_{A}=8r_{B}
    3. r_{A}=4r_{B}
    4. r_{A}=2\sqrt{2}r_{B}
    5. r_{A}=\frac{r_{B}}{4}

  4. If x^{2}-2xy+y^{2}=121, x-y=

    1. 10
    2. 11
    3. 12
    4. 13
    5. 14

  5. If c is equal to the sum b and twice of a, which of the following is the average of b and c?

    1. a
    2. b
    3. c
    4. a+b
    5. b+c

  6. f(x)=4x+8, f(c+3)=8, f(c)=

    1. -8
    2. 0
    3. 3
    4. 8
    5. -3

  7. 5^{n}.125^{m}=78,125, n+3m=

    1. 5
    2. 6
    3. 7
    4. 8
    5. 9

  8. \frac{3b^{2}}{a^{3}}=27a^{2}

    1. 3a^{3}
    2. 9a^{3}
    3. \frac{1}{9a^{3}}
    4. \frac{1}{a^{3}}
    5. \frac{1}{3a^{3}}

  9. Which of the following statements must be true about the x and y coordinates that satisfy the equation ay-ax=0, a \ne 0, x \ne 0 ,y \ne 0

    1. x>y
    2. xy=1
    3. x=-y
    4. y>x
    5. x=y

  10. What is the length of the side of a cube whose volume is 125 cubic units?

    1. 4
    2. 5
    3. 6
    4. 7
    5. 4.5
    Answer Key
    1 D
    2 E
    3 D
    4 B
    5 D
    6 D
    7 C
    8 E
    9 E
    10 B

CLEP College Algebra Practice Questions - 8 & Answer Key

  1. If \frac{1}{2} of a number is 3, what is \frac{1}{3} of the number?

    1. 1
    2. 2
    3. 3
    4. 6
    5. 8

  2. If x=-1, then x^{5}+x^{4}+x^{3}+x^{2}-5=

    1. -10
    2. -6
    3. -5
    4. -3
    5. -1

  3. If f(x)=2^{x}+7x, then f(4)=

    1. 24
    2. 36
    3. 44
    4. 54
    5. 64

  4. If x-3=y, then (y-x)^{3}=

    1. 27
    2. 54
    3. -54
    4. -27
    5. 81

  5. If a>b, and \frac{a}{b}>0, which of the following is true?

    1. a>0
    2. b>0
    3. ab>0

    1. I only
    2. II only
    3. III only
    4. I and II only
    5. I and III only

  6. Which of the following is equal to (\frac{x^{-7}y^{-5}}{x^{-3}y^{3}})^{-2}

    1. x^{8}y^{16}
    2. \frac{x^{8}}{y^{16}}
    3. \frac{y^{16}}{x^{8}}
    4. x^{4}y^{8}
    5. x^{8}y^{8}


  7. What is the slope of the line passing through the points (-1,7) and (3,5)?

    1. \frac{1}{2}
    2. -2
    3. -\frac{1}{2}
    4. 1
    5. 2

  8. The symbol \otimes represents a binary operation defined as a \otimes b=3^{a}+2^{b}, what is the value of (-2)\otimes (-3)

    1. -\frac{17}{72}
    2. \frac{72}{17}
    3. -72
    4. 72
    5. \frac{17}{72}

  9. If \sqrt{\frac{49}{x}}=\frac{7}{3}

    1. 6
    2. 9
    3. 25
    4. 49
    5. 147

  10. A bike that originally sold for 150 \$ was on sale for 120 \$. What was the rate of discount?

    1. 15 \%
    2. 21 \%
    3. 20 \%
    4. 25 \%
    5. 30 \%

    Answer Key
    1 B
    2 C
    3 C
    4 D
    5 C
    6 A
    7 C
    8 E
    9 B
    10 C

CLEP College Algebra Practice Questions - 7 & Answer Key

  1. If 0.10 < x < 0.12, which of the following could be a value of x?

    1. 9 \%
    2. 10 \%
    3. 11 \%
    4. 12 \%
    5. 13 \%

  2. If \frac{xyz}{t}=w and x and t are doubled, what happens to the value of w



    1. The value of w is two times smaller.
    2. The value of w is halved.
    3. The value of w is four times greater.
    4. The value of w is doubled
    5. The value of w remains the same.

  3. What is the tenth term of the pattern below?
    \frac{3}{2}, \frac{9}{4}, \frac{27}{8}, \frac{81}{16},...

    1. \frac{3}{2^{10}}
    2. \frac{30}{20}
    3. (\frac{3}{2})^{10}
    4. \frac{3^{10}}{2}
    5. \frac{300}{200}

  4. If a > 0 and b < 0, which of the following is always negative?

    1. -ab
    2. a+b
    3. |a|-|b|
    4. \frac{a}{b}
    5. b^{a}

  5. Which of the following number pairs is in the ratio 3:7?

    1. \frac{1}{3},\frac{1}{7}
    2. \frac{1}{7},\frac{1}{3}
    3. \frac{1}{7},\frac{3}{7}
    4. 7,\frac{1}{3}
    5. 1,\frac{1}{7}

  6. If x=-\frac{1}{4}, then (-x)^{-3}+(\frac{1}{x})^{2}=

    1. -80
    2. -64
    3. 16
    4. 64
    5. 80

  7. For which of the following values of x is the relationship x < x^{2} < x^{3} true?

    1. -3
    2. -\frac{2}{3}
    3. 0
    4. \frac{2}{3}
    5. 3

  8. x^{2}+2xy+y^{2}=169, -|-(x+y)|=

  9. How many distincts factors does 900 have?

    1. 2
    2. 3
    3. 4
    4. 5
    5. more than 5

  10. If x=-\frac{1}{7}, then which of the following is always positive for n > 0?

    1. x^{n}
    2. n^{x}
    3. nx
    4. n-x
    5. \frac{x}{n}


    Answer Key
    1 C
    2 E
    3 C
    4 D
    5 B
    6 E
    7 3
    8 -13
    9 A
    10 B

CLEP College Algebra Practice Questions - 6 & Answer Key

  1. For how many positive integers, n, is true that n^{2} \leq 3n

    1. 2
    2. 3
    3. 4
    4. 5
    5. more than 5

  2. If a^{4}=16, then 3^{a}

    1. 3
    2. 9
    3. 16
    4. 27
    5. 81

  3. \sqrt{20}\sqrt{5}=

    1. 2\sqrt{5}
    2. 10
    3. 4\sqrt{5}
    4. 5\sqrt{10}
    5. 10\sqrt{5}


  4. The sum of three positive consecutive even integers is x.
    What is the value of the middle of the three integers?

    1. \frac{x}{3}-1
    2. \frac{x}{3}+2
    3. 3x
    4. \frac{x-2}{3}
    5. \frac{x}{3}

  5. What is the average of 5^{10}, 5^{20}, 5^{30}, 5^{40} and 5^{50}?

    1. 5^{9}+5^{19}+5^{29}+5^{39}+5^{49}
    2. 5^{30}
    3. 5^{149}
    4. 150
    5. 5^{29}

  6. Which of the following is equal to (5^{6} \times 5^{9})^{10}?

    1. 25^{150}
    2. 25^{540}
    3. 5^{540}
    4. 5^{150}
    5. 5^{15}

  7. What is the value of 3^{\frac{1}{3}} \times 3^{\frac{2}{3}} \times 3^{\frac{3}{3}}?

    1. 3
    2. 9
    3. 27
    4. 30
    5. 81

  8. How many integers satisfy the inequality |x| < 2 \pi.


    1. 0

    2. 3

    3. 4

    4. 7

    5. More than 7



  9. What is the average of 5^{a} \times 5^{b}=5^{300}

    1. 50
    2. 100
    3. 150
    4. 200
    5. 250

  10. If 5^{a}5^{b}=\frac{5^{c}}{5^{d}}, what is d in terms of a, b and c?

    1. \frac{c}{a+b}
    2. c+ab
    3. c-a-b
    4. c+a-b
    5. \frac{b}{ac}
    Answer Key
    1 B
    2 B
    3 B
    4 E
    5 A
    6 D
    7 B
    8 E
    9 C
    10 C

GRE Practice Questions - 10 & Answer Key

  1. 2(5x-5)+5(2x+2)=
    1. 0
    2. 20x
    3. 20x-10
    4. 20x+10
    5. 10x^{2}+20+x+20

  2. If x=a+2, and y=-8-a then x+y=

    1. 6
    2. 10
    3. 2a-6
    4. -10
    5. -6

  3. If x \ne -5, then \frac{x^{2}+3x-10}{x+5}-(x-2)=

  4. If (a-\frac{1}{a})^{2}=8, then a^{2}+\frac{1}{a^{2}}=

    1. 8
    2. 6
    3. 10
    4. 12
    5. 100

  5. (x+y)^{2}=16, and x^{2}+y^{2}=6 then xy=

    1. 5
    2. 10
    3. 6
    4. 4
    5. 16

  6. (x+y)=2, and x^{2}-y^{2}=6 then x-y=

    1. 12
    2. 4
    3. 6
    4. \frac{1}{3}
    5. 3

  7. \frac{15y+3}{3}-5y=

    1. 1
    2. 0
    3. 10y+1
    4. 3
    5. 3y+1


  8. if b^{2}-a^{2}=9 then 5(a-b)(a+b)=

    1. 45
    2. \frac{9}{5}
    3. 4
    4. 50
    5. -45

  9. When c \ne 3, then \frac{c^{2}-9}{c-3}=

    1. c-3
    2. 1
    3. c+3
    4. 3-c
    5. o

  10. If b>0, and b^{2}-1=10 \times 12, then b=

    1. 9
    2. 1
    3. 12
    4. 10
    5. 11


    Answer Key
    1 B
    2 E
    3 0
    4 C
    5 A
    6 D
    7 A
    8 E
    9 C
    10 E

GRE Practice Questions - 9 & Answer Key

  1. Solve 15x-32=18-10x

    1. -14
    2. 10
    3. 14
    4. 2
    5. 50

  2. Solve \frac{x}{8}=\frac{x-2}{4}

    1. 12
    2. 4
    3. 6
    4. -\frac{1}{2}
    5. -6

  3. Which of the following are the factors of t^{2}+8t+16

    1. (t-4)(t-4)
    2. (t-8)(t-2)
    3. (t+8)(t+2)
    4. (t+1)(t+16)
    5. (t+4)(t+4)

  4. Solve for a in term of b, if 6a+12b=24

    1. 24-12b
    2. 2-\frac{1}{2}b
    3. 4-2b
    4. 24-18b
    5. 2b-4

  5. If ax+2b=5c-dx, what does x equal in terms of a, b, c, and d?

    1. 5c-d-2b-a
    2. a-d
    3. (5c-2b)(a-d)
    4. \frac{5c-d-2b}{a}
    5. \frac{5c-2b}{a-d}

  6. If (z-9)(z+3)=0, what are the two possible values of z?

    1. z=-9 abd z=3
    2. z=9 abd z=0
    3. z=0 abd z=-3
    4. z=9 abd z=-3
    5. z=-12 abd z=12

  7. If z^{2}-6z=16, which of the following could be a value of z^{2}+6z?

    1. -8
    2. 112
    3. 110
    4. 18
    5. 108

  8. If 3\sqrt{ a}-10=2, what is the value of a?

    1. 16
    2. 4
    3. 32
    4. 64
    5. 12

  9. Given \frac{(x+6)(x^{2}-2x-3)}{x^{2}+3x-18}=10, find the value of x.

    1. 18
    2. 4
    3. 12
    4. 9
    5. 12

  10. Solve the equation \frac{5x}{8}-\frac{3x}{5}=2.

    1. 40
    2. 80
    3. 160
    4. -80
    5. 20

    Answer Key
    1 D
    2 B
    3 E
    4 C
    5 E
    6 D
    7 B
    8 A
    9 D
    10 B

GRE Practice Questions - 8 & Answer Key

  1. Which of the following is equivalent to 5^{9}

    1. 5^{4}+5^{4}+5^{1}
    2. 5^{2} \times 5^{4} \times 5^{3}
    3. \frac{10^{9}}{2^{10}}
    4. (5^{4})^{5}
    5. \frac{5^{5}}{5^{4}}

  2. Which of the following is equivalent to \sqrt{289}

    1. 14
    2. 15
    3. 16
    4. 17
    5. 18

  3. Which of the following is a perfect square?

    1. 120
    2. 121
    3. 122
    4. 123
    5. 124

  4. Which of the following is equivalent to 3\sqrt{10}

    1. 3\sqrt{5} \times \sqrt{5}
    2. \sqrt{90}
    3. 3\sqrt{5} + 3\sqrt{2}
    4. 3\sqrt{5}+3\sqrt{5}
    5. \frac{3\sqrt{2}}{\sqrt{5}}

  5. Which of the following is equivalent to 10^{\frac{2}{5}}

    1. \sqrt[5]{5}
    2. \sqrt[5]{10}
    3. \sqrt[5]{20}
    4. \sqrt[5]{100}
    5. \sqrt[5]{1000}

  6. Which of the following fractions is equivalent to \frac{3}{6} \times \frac{2}{5}?

    1. \frac{6}{30}
    2. \frac{5}{30}
    3. \frac{5}{11}
    4. \frac{15}{12}
    5. \frac{9}{30}

  7. Which of the following expressions is equivalent to \frac{7}{6} \div \frac{5}{2}?

    1. \frac{7}{30}+\frac{2}{30}
    2. \frac{9}{6}+\frac{9}{5}
    3. \frac{7}{8}+\frac{5}{8}
    4. \frac{7}{6}+\frac{2}{5}
    5. \frac{1}{7}+\frac{2}{35}

  8. If 3^{x}=729, what is x^{3}?

  9. What is the value of ||4|-|-7||

    1. -11
    2. -3
    3. 0
    4. 3
    5. 11

  10. What is the value of (\sqrt{3}+\sqrt{5})^{2}-(\sqrt{8})^{2}

    1. 2\sqrt{15}
    2. \sqrt{15}
    3. 0
    4. 15
    5. 30

    Answer Key
    1 B
    2 D
    3 B
    4 B
    5 D
    6 A
    7 E
    8 125
    9 D
    10 A

GRE Practice Questions - 7 & Answer Key

  1. For how many positive integers, n, is true that n^{2} \leq 3n

    1. 2
    2. 3
    3. 4
    4. 5
    5. more than 5

  2. If a^{4}=16, then 3^{a}

    1. 3
    2. 9
    3. 16
    4. 27
    5. 81

  3. \sqrt{20}\sqrt{5}=

    1. 2\sqrt{5}
    2. 10
    3. 4\sqrt{5}
    4. 5\sqrt{10}
    5. 10\sqrt{5}


  4. The sum of three positive consecutive even integers is x.
    What is the value of the middle of the three integers?

    1. \frac{x}{3}-1
    2. \frac{x}{3}+2
    3. 3x
    4. \frac{x-2}{3}
    5. \frac{x}{3}

  5. What is the average of 5^{10}, 5^{20}, 5^{30}, 5^{40} and 5^{50}?

    1. 5^{9}+5^{19}+5^{29}+5^{39}+5^{49}
    2. 5^{30}
    3. 5^{149}
    4. 150
    5. 5^{29}

  6. Which of the following is equal to (5^{6} \times 5^{9})^{10}?

    1. 25^{150}
    2. 25^{540}
    3. 5^{540}
    4. 5^{150}
    5. 5^{15}

  7. What is the value of 3^{\frac{1}{3}} \times 3^{\frac{2}{3}} \times 3^{\frac{3}{3}}?

    1. 3
    2. 9
    3. 27
    4. 30
    5. 81

  8. How many integers satisfy the inequality |x| < 2 \pi.


    1. 0

    2. 3

    3. 4

    4. 7

    5. More than 7



  9. What is the average of 5^{a} \times 5^{b}=5^{300}

    1. 50
    2. 100
    3. 150
    4. 200
    5. 250

  10. If 5^{a}5^{b}=\frac{5^{c}}{5^{d}}, what is d in terms of a, b and c?

    1. \frac{c}{a+b}
    2. c+ab
    3. c-a-b
    4. c+a-b
    5. \frac{b}{ac}
    Answer Key
    1 B
    2 B
    3 B
    4 E
    5 A
    6 D
    7 B
    8 E
    9 C
    10 C

GRE Practice Questions - 6 & Answer Key

  1. If 0.10 < x < 0.12, which of the following could be a value of x?

    1. 9 \%
    2. 10 \%
    3. 11 \%
    4. 12 \%
    5. 13 \%

  2. If \frac{xyz}{t}=w and x and t are doubled, what happens to the value of w



    1. The value of w is two times smaller.
    2. The value of w is halved.
    3. The value of w is four times greater.
    4. The value of w is doubled
    5. The value of w remains the same.

  3. What is the tenth term of the pattern below?
    \frac{3}{2}, \frac{9}{4}, \frac{27}{8}, \frac{81}{16},...

    1. \frac{3}{2^{10}}
    2. \frac{30}{20}
    3. (\frac{3}{2})^{10}
    4. \frac{3^{10}}{2}
    5. \frac{300}{200}

  4. If a > 0 and b < 0, which of the following is always negative?

    1. -ab
    2. a+b
    3. |a|-|b|
    4. \frac{a}{b}
    5. b^{a}

  5. Which of the following number pairs is in the ratio 3:7?

    1. \frac{1}{3},\frac{1}{7}
    2. \frac{1}{7},\frac{1}{3}
    3. \frac{1}{7},\frac{3}{7}
    4. 7,\frac{1}{3}
    5. 1,\frac{1}{7}

  6. If x=-\frac{1}{4}, then (-x)^{-3}+(\frac{1}{x})^{2}=

    1. -80
    2. -64
    3. 16
    4. 64
    5. 80

  7. For which of the following values of x is the relationship x < x^{2} < x^{3} true?

    1. -3
    2. -\frac{2}{3}
    3. 0
    4. \frac{2}{3}
    5. 3

  8. x^{2}+2xy+y^{2}=169, -|-(x+y)|=

  9. How many distincts factors does 900 have?

    1. 2
    2. 3
    3. 4
    4. 5
    5. more than 5

  10. If x=-\frac{1}{7}, then which of the following is always positive for n > 0?

    1. x^{n}
    2. n^{x}
    3. nx
    4. n-x
    5. \frac{x}{n}


    Answer Key
    1 C
    2 E
    3 C
    4 D
    5 B
    6 E
    7 3
    8 -13
    9 A
    10 B

GRE Practice Questions - 5 & Answer Key

  1. If \frac{1}{2} of a number is 3, what is \frac{1}{3} of the number?

    1. 1
    2. 2
    3. 3
    4. 6
    5. 8

  2. If x=-1, then x^{5}+x^{4}+x^{3}+x^{2}-5=

    1. -10
    2. -6
    3. -5
    4. -3
    5. -1

  3. If f(x)=2^{x}+7x, then f(4)=

    1. 24
    2. 36
    3. 44
    4. 54
    5. 64

  4. If x-3=y, then (y-x)^{3}=

    1. 27
    2. 54
    3. -54
    4. -27
    5. 81

  5. If a>b, and \frac{a}{b}>0, which of the following is true?

    1. a>0
    2. b>0
    3. ab>0

    1. I only
    2. II only
    3. III only
    4. I and II only
    5. I and III only

  6. Which of the following is equal to (\frac{x^{-7}y^{-5}}{x^{-3}y^{3}})^{-2}

    1. x^{8}y^{16}
    2. \frac{x^{8}}{y^{16}}
    3. \frac{y^{16}}{x^{8}}
    4. x^{4}y^{8}
    5. x^{8}y^{8}


  7. What is the slope of the line passing through the points (-1,7) and (3,5)?

    1. \frac{1}{2}
    2. -2
    3. -\frac{1}{2}
    4. 1
    5. 2

  8. The symbol \otimes represents a binary operation defined as a \otimes b=3^{a}+2^{b}, what is the value of (-2)\otimes (-3)

    1. -\frac{17}{72}
    2. \frac{72}{17}
    3. -72
    4. 72
    5. \frac{17}{72}

  9. If \sqrt{\frac{49}{x}}=\frac{7}{3}

    1. 6
    2. 9
    3. 25
    4. 49
    5. 147

  10. A bike that originally sold for 150 \$ was on sale for 120 \$. What was the rate of discount?

    1. 15 \%
    2. 21 \%
    3. 20 \%
    4. 25 \%
    5. 30 \%

    Answer Key
    1 B
    2 C
    3 C
    4 D
    5 C
    6 A
    7 C
    8 E
    9 B
    10 C

GRE Practice Questions - 4 & Answer Key

  1. If 3x+7=5x+1

    1. 2.5
    2. 3.5
    3. 4
    4. 3
    5. 4.5

  2. What is the next term in the sequence: 6, 3, 10, 7, 14, 11, ...?

    1. 19
    2. 15
    3. 6
    4. 17
    5. 18

  3. The area of the basis of Cylinder A is 8 times the area of the basis of Cylinder B. What is the radius of Cylinder A in terms of the radius of Cylinder B?

    1. r_{A}=\frac{r_{B}}{8}
    2. r_{A}=8r_{B}
    3. r_{A}=4r_{B}
    4. r_{A}=2\sqrt{2}r_{B}
    5. r_{A}=\frac{r_{B}}{4}

  4. If x^{2}-2xy+y^{2}=121, x-y=

    1. 10
    2. 11
    3. 12
    4. 13
    5. 14

  5. If c is equal to the sum b and twice of a, which of the following is the average of b and c?

    1. a
    2. b
    3. c
    4. a+b
    5. b+c

  6. f(x)=4x+8, f(c+3)=8, f(c)=

    1. -8
    2. 0
    3. 3
    4. -3
    5. 8

  7. 5^{n}.125^{m}=78,125, n+3m=

    1. 5
    2. 6
    3. 7
    4. 8
    5. 9

  8. \frac{3b^{2}}{a^{3}}=27a^{2}

    1. 3a^{3}
    2. 9a^{3}
    3. \frac{1}{9a^{3}}
    4. \frac{1}{a^{3}}
    5. \frac{1}{3a^{3}}

  9. Which of the following statements must be true about the x and y coordinates that satisfy the equation ay-ax=0, a \ne 0, x \ne 0 ,y \ne 0

    1. x>y
    2. xy=1
    3. x=-y
    4. y>x
    5. x=y

  10. What is the length of the side of a cube whose volume is 125 cubic units?

    1. 4
    2. 5
    3. 6
    4. 7
    5. 4.5
    Answer Key
    1 D
    2 E
    3 D
    4 B
    5 D
    6 D
    7 C
    8 E
    9 E
    10 B

GMAT Practice Questions - 12 & Answer Key

  1. If 3x+7=5x+1

    1. 2.5
    2. 3.5
    3. 4
    4. 3
    5. 4.5

  2. What is the next term in the sequence: 6, 3, 10, 7, 14, 11, ...?

    1. 19
    2. 15
    3. 6
    4. 17
    5. 18

  3. The area of the basis of Cylinder A is 8 times the area of the basis of Cylinder B. What is the radius of Cylinder A in terms of the radius of Cylinder B?

    1. r_{A}=\frac{r_{B}}{8}
    2. r_{A}=8r_{B}
    3. r_{A}=4r_{B}
    4. r_{A}=2\sqrt{2}r_{B}
    5. r_{A}=\frac{r_{B}}{4}

  4. If x^{2}-2xy+y^{2}=121, x-y=

    1. 10
    2. 11
    3. 12
    4. 13
    5. 14

  5. If c is equal to the sum b and twice of a, which of the following is the average of b and c?

    1. a
    2. b
    3. c
    4. a+b
    5. b+c

  6. f(x)=4x+8, f(c+3)=8, f(c)=

    1. -8
    2. 0
    3. 3
    4. 8
    5. -3

  7. 5^{n}.125^{m}=78,125, n+3m=

    1. 5
    2. 6
    3. 7
    4. 8
    5. 9

  8. \frac{3b^{2}}{a^{3}}=27a^{2}

    1. 3a^{3}
    2. 9a^{3}
    3. \frac{1}{9a^{3}}
    4. \frac{1}{a^{3}}
    5. \frac{1}{3a^{3}}

  9. Which of the following statements must be true about the x and y coordinates that satisfy the equation ay-ax=0, a \ne 0, x \ne 0 ,y \ne 0

    1. x>y
    2. xy=1
    3. x=-y
    4. y>x
    5. x=y

  10. What is the length of the side of a cube whose volume is 125 cubic units?

    1. 4
    2. 5
    3. 6
    4. 7
    5. 4.5
    Answer Key
    1 D
    2 E
    3 D
    4 B
    5 D
    6 D
    7 C
    8 E
    9 E
    10 B

GMAT Practice Questions - 11 & Answer Key

  1. If \frac{1}{2} of a number is 3, what is \frac{1}{3} of the number?

    1. 1
    2. 2
    3. 3
    4. 6
    5. 8

  2. If x=-1, then x^{5}+x^{4}+x^{3}+x^{2}-5=

    1. -10
    2. -6
    3. -5
    4. -3
    5. -1

  3. If f(x)=2^{x}+7x, then f(4)=

    1. 24
    2. 36
    3. 44
    4. 54
    5. 64

  4. If x-3=y, then (y-x)^{3}=

    1. 27
    2. 54
    3. -54
    4. -27
    5. 81

  5. If a>b, and \frac{a}{b}>0, which of the following is true?

    1. a>0
    2. b>0
    3. ab>0

    1. I only
    2. II only
    3. III only
    4. I and II only
    5. I and III only

  6. Which of the following is equal to (\frac{x^{-7}y^{-5}}{x^{-3}y^{3}})^{-2}

    1. x^{8}y^{16}
    2. \frac{x^{8}}{y^{16}}
    3. \frac{y^{16}}{x^{8}}
    4. x^{4}y^{8}
    5. x^{8}y^{8}


  7. What is the slope of the line passing through the points (-1,7) and (3,5)?

    1. \frac{1}{2}
    2. -2
    3. -\frac{1}{2}
    4. 1
    5. 2

  8. The symbol \otimes represents a binary operation defined as a \otimes b=3^{a}+2^{b}, what is the value of (-2)\otimes (-3)

    1. -\frac{17}{72}
    2. \frac{72}{17}
    3. -72
    4. 72
    5. \frac{17}{72}

  9. If \sqrt{\frac{49}{x}}=\frac{7}{3}

    1. 6
    2. 9
    3. 25
    4. 49
    5. 147

  10. A bike that originally sold for 150 \$ was on sale for 120 \$. What was the rate of discount?

    1. 15 \%
    2. 21 \%
    3. 20 \%
    4. 25 \%
    5. 30 \%

    Answer Key
    1 B
    2 C
    3 C
    4 D
    5 C
    6 A
    7 C
    8 E
    9 B
    10 C

GMAT Practice Questions - 10 & Answer Key

  1. If 0.10 < x < 0.12, which of the following could be a value of x?

    1. 9 \%
    2. 10 \%
    3. 11 \%
    4. 12 \%
    5. 13 \%

  2. If \frac{xyz}{t}=w and x and t are doubled, what happens to the value of w



    1. The value of w is two times smaller.
    2. The value of w is halved.
    3. The value of w is four times greater.
    4. The value of w is doubled
    5. The value of w remains the same.

  3. What is the tenth term of the pattern below?
    \frac{3}{2}, \frac{9}{4}, \frac{27}{8}, \frac{81}{16},...

    1. \frac{3}{2^{10}}
    2. \frac{30}{20}
    3. (\frac{3}{2})^{10}
    4. \frac{3^{10}}{2}
    5. \frac{300}{200}

  4. If a > 0 and b < 0, which of the following is always negative?

    1. -ab
    2. a+b
    3. |a|-|b|
    4. \frac{a}{b}
    5. b^{a}

  5. Which of the following number pairs is in the ratio 3:7?

    1. \frac{1}{3},\frac{1}{7}
    2. \frac{1}{7},\frac{1}{3}
    3. \frac{1}{7},\frac{3}{7}
    4. 7,\frac{1}{3}
    5. 1,\frac{1}{7}

  6. If x=-\frac{1}{4}, then (-x)^{-3}+(\frac{1}{x})^{2}=

    1. -80
    2. -64
    3. 16
    4. 64
    5. 80

  7. For which of the following values of x is the relationship x < x^{2} < x^{3} true?

    1. -3
    2. -\frac{2}{3}
    3. 0
    4. \frac{2}{3}
    5. 3

  8. x^{2}+2xy+y^{2}=169, -|-(x+y)|=

  9. How many distincts factors does 900 have?

    1. 2
    2. 3
    3. 4
    4. 5
    5. more than 5

  10. If x=-\frac{1}{7}, then which of the following is always positive for n > 0?

    1. x^{n}
    2. n^{x}
    3. nx
    4. n-x
    5. \frac{x}{n}


    Answer Key
    1 C
    2 E
    3 C
    4 D
    5 B
    6 E
    7 3
    8 -13
    9 A
    10 B

GMAT Practice Questions - 9 & Answer Key

  1. For how many positive integers, n, is true that n^{2} \leq 3n

    1. 2
    2. 3
    3. 4
    4. 5
    5. more than 5

  2. If a^{4}=16, then 3^{a}

    1. 3
    2. 9
    3. 16
    4. 27
    5. 81

  3. \sqrt{20}\sqrt{5}=

    1. 2\sqrt{5}
    2. 10
    3. 4\sqrt{5}
    4. 5\sqrt{10}
    5. 10\sqrt{5}


  4. The sum of three positive consecutive even integers is x.
    What is the value of the middle of the three integers?

    1. \frac{x}{3}-1
    2. \frac{x}{3}+2
    3. 3x
    4. \frac{x-2}{3}
    5. \frac{x}{3}

  5. What is the average of 5^{10}, 5^{20}, 5^{30}, 5^{40} and 5^{50}?

    1. 5^{9}+5^{19}+5^{29}+5^{39}+5^{49}
    2. 5^{30}
    3. 5^{149}
    4. 150
    5. 5^{29}

  6. Which of the following is equal to (5^{6} \times 5^{9})^{10}?

    1. 25^{150}
    2. 25^{540}
    3. 5^{540}
    4. 5^{150}
    5. 5^{15}

  7. What is the value of 3^{\frac{1}{3}} \times 3^{\frac{2}{3}} \times 3^{\frac{3}{3}}?

    1. 3
    2. 9
    3. 27
    4. 30
    5. 81

  8. How many integers satisfy the inequality |x| < 2 \pi.


    1. 0

    2. 3

    3. 4

    4. 7

    5. More than 7



  9. What is the average of 5^{a} \times 5^{b}=5^{300}

    1. 50
    2. 100
    3. 150
    4. 200
    5. 250

  10. If 5^{a}5^{b}=\frac{5^{c}}{5^{d}}, what is d in terms of a, b and c?

    1. \frac{c}{a+b}
    2. c+ab
    3. c-a-b
    4. c+a-b
    5. \frac{b}{ac}
    Answer Key
    1 B
    2 B
    3 B
    4 E
    5 A
    6 D
    7 B
    8 E
    9 C
    10 C

GMAT Practice Questions - 8 & Answer Key

  1. Which of the following is equivalent to 5^{9}

    1. 5^{4}+5^{4}+5^{1}
    2. 5^{2} \times 5^{4} \times 5^{3}
    3. \frac{10^{9}}{2^{10}}
    4. (5^{4})^{5}
    5. \frac{5^{5}}{5^{4}}

  2. Which of the following is equivalent to \sqrt{289}

    1. 14
    2. 15
    3. 16
    4. 17
    5. 18

  3. Which of the following is a perfect square?

    1. 120
    2. 121
    3. 122
    4. 123
    5. 124

  4. Which of the following is equivalent to 3\sqrt{10}

    1. 3\sqrt{5} \times \sqrt{5}
    2. \sqrt{90}
    3. 3\sqrt{5} + 3\sqrt{2}
    4. 3\sqrt{5}+3\sqrt{5}
    5. \frac{3\sqrt{2}}{\sqrt{5}}

  5. Which of the following is equivalent to 10^{\frac{2}{5}}

    1. \sqrt[5]{5}
    2. \sqrt[5]{10}
    3. \sqrt[5]{20}
    4. \sqrt[5]{100}
    5. \sqrt[5]{1000}

  6. Which of the following fractions is equivalent to \frac{3}{6} \times \frac{2}{5}?

    1. \frac{6}{30}
    2. \frac{5}{30}
    3. \frac{5}{11}
    4. \frac{15}{12}
    5. \frac{9}{30}

  7. Which of the following expressions is equivalent to \frac{7}{6} \div \frac{5}{2}?

    1. \frac{7}{30}+\frac{2}{30}
    2. \frac{9}{6}+\frac{9}{5}
    3. \frac{7}{8}+\frac{5}{8}
    4. \frac{7}{6}+\frac{2}{5}
    5. \frac{1}{7}+\frac{2}{35}

  8. If 3^{x}=729, what is x^{3}?

  9. What is the value of ||4|-|-7||

    1. -11
    2. -3
    3. 0
    4. 3
    5. 11

  10. What is the value of (\sqrt{3}+\sqrt{5})^{2}-(\sqrt{8})^{2}

    1. 2\sqrt{15}
    2. \sqrt{15}
    3. 0
    4. 15
    5. 30

    Answer Key
    1 B
    2 D
    3 B
    4 B
    5 D
    6 A
    7 E
    8 125
    9 D
    10 A

GMAT Practice Questions - 7 & Answer Key

  1. Solve 15x-32=18-10x

    1. -14
    2. 10
    3. 14
    4. 2
    5. 50

  2. Solve \frac{x}{8}=\frac{x-2}{4}

    1. 12
    2. 4
    3. 6
    4. -\frac{1}{2}
    5. -6

  3. Which of the following are the factors of t^{2}+8t+16

    1. (t-4)(t-4)
    2. (t-8)(t-2)
    3. (t+8)(t+2)
    4. (t+1)(t+16)
    5. (t+4)(t+4)

  4. Solve for a in term of b, if 6a+12b=24

    1. 24-12b
    2. 2-\frac{1}{2}b
    3. 4-2b
    4. 24-18b
    5. 2b-4

  5. If ax+2b=5c-dx, what does x equal in terms of a, b, c, and d?

    1. 5c-d-2b-a
    2. a-d
    3. (5c-2b)(a-d)
    4. \frac{5c-d-2b}{a}
    5. \frac{5c-2b}{a-d}

  6. If (z-9)(z+3)=0, what are the two possible values of z?

    1. z=-9 abd z=3
    2. z=9 abd z=0
    3. z=0 abd z=-3
    4. z=9 abd z=-3
    5. z=-12 abd z=12

  7. If z^{2}-6z=16, which of the following could be a value of z^{2}+6z?

    1. -8
    2. 112
    3. 110
    4. 18
    5. 108

  8. If 3\sqrt{ a}-10=2, what is the value of a?

    1. 16
    2. 4
    3. 32
    4. 64
    5. 12

  9. Given \frac{(x+6)(x^{2}-2x-3)}{x^{2}+3x-18}=10, find the value of x.

    1. 18
    2. 4
    3. 12
    4. 9
    5. 12

  10. Solve the equation \frac{5x}{8}-\frac{3x}{5}=2.

    1. 40
    2. 80
    3. 160
    4. -80
    5. 20

    Answer Key
    1 D
    2 B
    3 E
    4 C
    5 E
    6 D
    7 B
    8 A
    9 D
    10 B

GMAT Practice Questions -6 & Answer Key

  1. 2(5x-5)+5(2x+2)=
    1. 0
    2. 20x
    3. 20x-10
    4. 20x+10
    5. 10x^{2}+20+x+20

  2. If x=a+2, and y=-8-a then x+y=

    1. 6
    2. 10
    3. 2a-6
    4. -10
    5. -6

  3. If x \ne -5, then \frac{x^{2}+3x-10}{x+5}-(x-2)=

  4. If (a-\frac{1}{a})^{2}=8, then a^{2}+\frac{1}{a^{2}}=

    1. 8
    2. 6
    3. 10
    4. 12
    5. 100

  5. (x+y)^{2}=16, and x^{2}+y^{2}=6 then xy=

    1. 5
    2. 10
    3. 6
    4. 4
    5. 16

  6. (x+y)=2, and x^{2}-y^{2}=6 then x-y=

    1. 12
    2. 4
    3. 6
    4. \frac{1}{3}
    5. 3

  7. \frac{15y+3}{3}-5y=

    1. 1
    2. 0
    3. 10y+1
    4. 3
    5. 3y+1


  8. if b^{2}-a^{2}=9 then 5(a-b)(a+b)=

    1. 45
    2. \frac{9}{5}
    3. 4
    4. 50
    5. -45

  9. When c \ne 3, then \frac{c^{2}-9}{c-3}=

    1. c-3
    2. 1
    3. c+3
    4. 3-c
    5. o

  10. If b>0, and b^{2}-1=10 \times 12, then b=

    1. 9
    2. 1
    3. 12
    4. 10
    5. 11


    Answer Key
    1 B
    2 E
    3 0
    4 C
    5 A
    6 D
    7 A
    8 E
    9 C
    10 E