This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License .
math exams: August 2011
Pharmacy College Admission Test
Evaluate the expression: $1000(2^{-1.5})$
$2828,427$
$2000.00$
$353.55$
$3000$
Evaluate the expression: $\log_{49}7$
$\frac{1}{4}$
$\frac{1}{2}$
$\frac{2}{5}$
$\frac{1}{49}$
Place into standard form: $(5+i)-(7-7i)$
$-2+8i$
$2+8i$
$12+8i$
$-2+6i$
Find the domaine of the function: $f(x)=\sqrt{-6x+12}$
$x \geq 3$
$x \leq -2$
$x \leq -1$
$x \leq 2$
What is the value of: $3\ln e^{6}$
$6$
$18$
$9$
$12$
What is the value of: $\csc (150 deg)$
$1$
$-1$
$-2$
$2$
Solve the equation: $x^{2}-10x+50=0$
$5+5i$ or $5-5i$
$2+5i$ or $2-5i$
$4+5i$ or $4-5i$
$1+5i$ or $1-5i$
What is the value of $x$: $\log_{10}x=-3$
$0.01$
$0.001$
$0.1$
$1$
Factor the expression: $x^{2}-3ix-2$
$(x+i)(x+2i)$
$(x+i)(x-2i)$
$(x-i)(x-2i)$
$(-x-i)(x-2i)$
Identify the horizontal and vertical asymptotes for: $\frac{5x^{2}}{x^{2}-9}$
$y=5$, $x=-3$, $x=3$
$y=-5$, $x=-3$
$y=5$, $x=3$
$y=5$, $x=-3$
Answer Key
1 C
2 B
3 A
4 D
5 B
6 D
7 A
8 B
9 C
10 A
Pharmacy College Admission Test
For how many positive integers, $n$, is true that $n^{2} \leq 3n$
$2$
$3$
$4$
$5$
If $a^{4}=16$, then $3^{a}$
$3$
$9$
$16$
$27$
$\sqrt{20}\sqrt{5}=$
$2\sqrt{5}$
$10$
$4\sqrt{5}$
$5\sqrt{10}$
The sum of three positive consecutive even integers is x.
What is the value of the middle of the three integers?
$\frac{x}{3}+2$
$3x$
$\frac{x-2}{3}$
$\frac{x}{3}$
What is the average of $5^{10}$, $5^{20}$, $5^{30}$, $5^{40}$ and $5^{50}$?
$5^{9}+5^{19}+5^{29}+5^{39}+5^{49}$
$5^{30}$
$5^{149}$
$150$
Which of the following is equal to $(5^{6} \times 5^{9})^{10}$?
$25^{150}$
$25^{540}$
$5^{540}$
$5^{150}$
What is the value of $3^{\frac{1}{3}} \times 3^{\frac{2}{3}} \times 3^{\frac{3}{3}}$?
$3$
$9$
$27$
$30$
How many integers satisfy the inequality $|x| < 2 \pi$.
$3$
$4$
$7$
More than $7$
What is the average of $5^{a} \times 5^{b}=5^{300}$
$50$
$100$
$150$
$200$
If $5^{a}5^{b}=\frac{5^{c}}{5^{d}}$, what is d in terms of $a$, $b$ and $c$?
$\frac{c}{a+b}$
$c+ab$
$c-a-b$
$c+a-b$
Answer Key
1 B
2 B
3 B
4 D
5 A
6 D
7 B
8 D
9 C
10 C
Pharmacy College Admission Test
Which of the following is equivalent to $5^{9}$
$5^{4}+5^{4}+5^{1}$
$5^{2} \times 5^{4} \times 5^{3}$
$\frac{10^{9}}{2^{10}}$
$(5^{4})^{5}$
Which of the following is equivalent to $\sqrt{289}$
$14$
$15$
$16$
$17$
Which of the following is a perfect square?
$120$
$121$
$122$
$123$
Which of the following is equivalent to $3\sqrt{10}$
$3\sqrt{5} \times \sqrt{5}$
$\sqrt{90}$
$3\sqrt{5} + 3\sqrt{2}$
$3\sqrt{5}+3\sqrt{5}$
Which of the following is equivalent to $10^{\frac{2}{5}}$
$\sqrt[5]{5}$
$\sqrt[5]{10}$
$\sqrt[5]{20}$
$\sqrt[5]{100}$
Which of the following fractions is equivalent to $\frac{3}{6} \times \frac{2}{5}$?
$\frac{6}{30}$
$\frac{5}{30}$
$\frac{5}{11}$
$\frac{15}{12}$
Which of the following expressions is equivalent to $\frac{7}{6} \div \frac{5}{2}$?
$\frac{9}{6}+\frac{9}{5}$
$\frac{7}{8}+\frac{5}{8}$
$\frac{7}{6}+\frac{2}{5}$
$\frac{1}{7}+\frac{2}{35}$
If $3^{x}=729$, what is $x^{3}$?
What is the value of $||4|-|-7||$
$-11$
$-3$
$0$
$3$
What is the value of $(\sqrt{3}+\sqrt{5})^{2}-(\sqrt{8})^{2}$
$2\sqrt{15}$
$\sqrt{15}$
$0$
$15$
Answer Key
1 B
2 D
3 B
4 B
5 D
6 A
7 D
8 125
9 D
10 A
Pharmacy College Admission Test
Solve $15x-32=18-10x$
$-14$
$10$
$14$
$2$
Solve $\frac{x}{8}=\frac{x-2}{4}$
$12$
$4$
$6$
$-\frac{1}{2}$
Which of the following are the factors of $t^{2}+8t+16$
$(t-8)(t-2)$
$(t+8)(t+2)$
$(t+1)(t+16)$
$(t+4)(t+4)$
Solve for a in term of b, if $6a+12b=24$
$24-12b$
$2-\frac{1}{2}b$
$4-2b$
$24-18b$
If $ax+2b=5c-dx$, what does x equal in terms of a, b, c, and d?
$a-d$
$(5c-2b)(a-d)$
$\frac{5c-d-2b}{a}$
$\frac{5c-2b}{a-d}$
If $(z-9)(z+3)=0$, what are the two possible values of z?
$z=-9$ abd $z=3$
$z=9$ abd $z=0$
$z=0$ abd $z=-3$
$z=9$ abd $z=-3$
If $z^{2}-6z=16$, which of the following could be a value of $z^{2}+6z$?
$-8$
$112$
$110$
$18$
If $3\sqrt{ a}-10=2$, what is the value of a?
$16$
$4$
$32$
$64$
Given $\frac{(x+6)(x^{2}-2x-3)}{x^{2}+3x-18}=10$, find the value of x.
$18$
$4$
$12$
$9$
Solve the equation $\frac{5x}{8}-\frac{3x}{5}=2$.
$40$
$80$
$160$
$-80$
Answer Key
1 D
2 B
3 D
4 C
5 D
6 D
7 B
8 A
9 D
10 B
Pharmacy College Admission Test
$2(5x-5)+5(2x+2)=$
$0$
$20x$
$20x-10$
$20x+10$
If $x=a+2$, and $y=-8-a$ then $x+y=$
$10$
$2a-6$
$-10$
$-6$
If $x \ne -5$, then $\frac{x^{2}+3x-10}{x+5}-(x-2)=$
If $(a-\frac{1}{a})^{2}=8$, then $a^{2}+\frac{1}{a^{2}}=$
$8$
$6$
$10$
$12$
$(x+y)^{2}=16$, and $x^{2}+y^{2}=6$ then $xy=$
$5$
$10$
$6$
$4$
$(x+y)=2$, and $x^{2}-y^{2}=6$ then $x-y=$
$12$
$4$
$6$
$\frac{1}{3}$
$\frac{15y+3}{3}-5y=$
$1$
$0$
$10y+1$
$3$
if $b^{2}-a^{2}=9$ then $5(a-b)(a+b)=$
$\frac{9}{5}$
$4$
$50$
$-45$
When $c \ne 3$, then $\frac{c^{2}-9}{c-3}=$
$c-3$
$1$
$c+3$
$3-c$
If $b>0$, and $b^{2}-1=10 \times 12$, then $b=$
$1$
$12$
$10$
$11$
Answer Key
1 B
2 D
3 0
4 C
5 A
6 D
7 A
8 D
9 C
10 D
Pharmacy College Admission Test
If $3x+7=5x+1$
$2.5$
$3.5 $
$4 $
$3 $
What is the next term in the sequence: 6, 3, 10, 7, 14, 11, ...?
$15 $
$6 $
$ 17$
$ 18$
The area of the basis of Cylinder A is 8 times the area of the basis of Cylinder B. What is the radius of Cylinder A in terms of the radius of Cylinder B?
$r_{A}=\frac{r_{B}}{8}$
$r_{A}=8r_{B} $
$r_{A}=4r_{B} $
$r_{A}=2\sqrt{2}r_{B} $
If $x^{2}-2xy+y^{2}=121$, $x-y=$
$10$
$11 $
$12 $
$13 $
If c is equal to the sum b and twice of a, which of the following is the average of b and c?
$a$
$b $
$c $
$a+b $
$f(x)=4x+8$, $f(c+3)=8$, $f(c)=$
$-8$
$0 $
$3 $
$8 $
$5^{n}.125^{m}=78,125$, $n+3m=$
$5$
$ 6$
$ 7$
$ 8$
$\frac{3b^{2}}{a^{3}}=27a^{2}$
$9a^{3} $
$\frac{1}{9a^{3}} $
$\frac{1}{a^{3}} $
$\frac{1}{3a^{3}} $
Which of the following statements must be true about the x and y coordinates that satisfy the equation $ay-ax=0$, $a \ne 0$, $x \ne 0$ ,$y \ne 0$
$xy=1 $
$x=-y $
$y>x $
$x=y $
What is the length of the side of a cube whose volume is 125 cubic units?
$4$
$ 5$
$ 6$
$ 7$
Answer Key
1 D
2 D
3 D
4 B
5 D
6 D
7 C
8 D
9 D
10 B
Pharmacy College Admission Test
If $\frac{1}{2}$ of a number is 3, what is $\frac{1}{3}$ of the number?
$1$
$2 $
$ 3$
$ 6$
If $x=-1$, then $x^{5}+x^{4}+x^{3}+x^{2}-5=$
$-10$
$-6 $
$-5$
$-3$
If $f(x)=2^{x}+7x$, then $f(4)=$
$24$
$ 36$
$44 $
$54 $
If $x-3=y$, then $(y-x)^{3}=$
$27$
$54 $
$ -54$
$ -27$
If $a>b$, and $\frac{a}{b}>0$, which of the following is true?
$a>0$
$b>0$
$ab>0$
I only
II only
III only
I and II only
Which of the following is equal to $(\frac{x^{-7}y^{-5}}{x^{-3}y^{3}})^{-2}$
$x^{8}y^{16}$
$\frac{x^{8}}{y^{16}} $
$\frac{y^{16}}{x^{8}} $
$x^{4}y^{8}$
What is the slope of the line passing through the points (-1,7) and (3,5)?
$\frac{1}{2}$
$-2$
$-\frac{1}{2} $
$1$
The symbol $\otimes$ represents a binary operation defined as $a \otimes b=3^{a}+2^{b}$, what is the value of $(-2)\otimes (-3)$
$\frac{72}{17} $
$-72 $
$ 72$
$ \frac{17}{72}$
If $\sqrt{\frac{49}{x}}=\frac{7}{3}$
$6$
$9$
$25$
$49$
A bike that originally sold for $150 \$$ was on sale for $120 \$$. What was the rate of discount?
$15 \%$
$21 \%$
$20 \%$
$25 \% $
Answer Key
1 B
2 C
3 C
4 D
5 C
6 A
7 C
8 D
9 B
10 C
Pharmacy College Admission Test
If $ 0.10 < x < 0.12$, which of the following could be a value of $x$?
$9 \%$
$10 \% $
$11 \% $
$12 \% $
If $\frac{xyz}{t}=w$ and $x$ and $t$ are doubled, what happens to the value of w
The value of $w$ is halved.
The value of $w$ is four times greater.
The value of $w$ is doubled
The value of $w$ remains the same.
What is the tenth term of the pattern below?
$\frac{3}{2}$, $\frac{9}{4}$, $\frac{27}{8}$, $\frac{81}{16}$,...
$\frac{3}{2^{10}}$
$\frac{30}{20}$
$(\frac{3}{2})^{10}$
$\frac{3^{10}}{2}$
If $a > 0$ and $b < 0$, which of the following is always negative?
$-ab$
$a+b$
$|a|-|b|$
$\frac{a}{b}$
Which of the following number pairs is in the ratio $3:7$?
$\frac{1}{3}$,$\frac{1}{7}$
$\frac{1}{7}$,$\frac{1}{3}$
$\frac{1}{7}$,$\frac{3}{7}$
$7$,$\frac{1}{3}$
If $x=-\frac{1}{4}$, then $(-x)^{-3}+(\frac{1}{x})^{2}=$
$-64$
$16 $
$64$
$80$
For which of the following values of $x$ is the relationship $x < x^{2} < x^{3}$ true?
$-3$
$-\frac{2}{3}$
$0$
$\frac{2}{3} $
$x^{2}+2xy+y^{2}=169$, $-|-(x+y)|=$
How many distincts factors does 900 have?
$2$
$ 3$
$ 4$
$ 5$
If $x=-\frac{1}{7}$, then which of the following is always positive for $n > 0$?
$x^{n}$
$n^{x}$
$nx$
$n-x$
Answer Key
1 C
2 D
3 C
4 D
5 B
6 D
7 3
8 -13
9 B
10 B
Factor $3a^{2}+3ab-6b^{2}$
Factor $x^{3}-4x^{2}+2x-8$
Factor $25a^{2}-36b^{2}$
Resolve into factors $x^{2}-ax+bx-ab$
Resolve into factors $6x^{2}-9ax+4bx-6ab$
Resolve into factors $x^{2}+11x+24$
Resolve into factors $x^{2}-10x+24$
Resolve into factors $x^{2}-10ax+10a^{2}$
Which of the following is equivalent to $5^{9}$
$5^{4}+5^{4}+5^{1}$
$5^{2} \times 5^{4} \times 5^{3}$
$\frac{10^{9}}{2^{10}}$
$(5^{4})^{5}$
$\frac{5^{5}}{5^{4}}$
Which of the following is equivalent to $\sqrt{289}$
$14$
$15$
$16$
$17$
$18$
Which of the following is a perfect square?
$120$
$121$
$122$
$123$
$124$
Which of the following is equivalent to $3\sqrt{10}$
$3\sqrt{5} \times \sqrt{5}$
$\sqrt{90}$
$3\sqrt{5} + 3\sqrt{2}$
$3\sqrt{5}+3\sqrt{5}$
$\frac{3\sqrt{2}}{\sqrt{5}}$
Which of the following is equivalent to $10^{\frac{2}{5}}$
$\sqrt[5]{5}$
$\sqrt[5]{10}$
$\sqrt[5]{20}$
$\sqrt[5]{100}$
$\sqrt[5]{1000}$
Which of the following fractions is equivalent to $\frac{3}{6} \times \frac{2}{5}$?
$\frac{6}{30}$
$\frac{5}{30}$
$\frac{5}{11}$
$\frac{15}{12}$
$\frac{9}{30}$
Which of the following expressions is equivalent to $\frac{7}{6} \div \frac{5}{2}$?
$\frac{7}{30}+\frac{2}{30}$
$\frac{9}{6}+\frac{9}{5}$
$\frac{7}{8}+\frac{5}{8}$
$\frac{7}{6}+\frac{2}{5}$
$\frac{1}{7}+\frac{2}{35}$
If $3^{x}=729$, what is $x^{3}$?
What is the value of $||4|-|-7||$
$-11$
$-3$
$0$
$3$
$11$
What is the value of $(\sqrt{3}+\sqrt{5})^{2}-(\sqrt{8})^{2}$
$2\sqrt{15}$
$\sqrt{15}$
$0$
$15$
$30$
Answer Key
1 B
2 D
3 B
4 B
5 D
6 A
7 E
8 125
9 D
10 A
Solve $15x-32=18-10x$
$-14$
$10$
$14$
$2$
$50$
Solve $\frac{x}{8}=\frac{x-2}{4}$
$12$
$4$
$6$
$-\frac{1}{2}$
$-6$
Which of the following are the factors of $t^{2}+8t+16$
$(t-4)(t-4)$
$(t-8)(t-2)$
$(t+8)(t+2)$
$(t+1)(t+16)$
$(t+4)(t+4)$
Solve for a in term of b, if $6a+12b=24$
$24-12b$
$2-\frac{1}{2}b$
$4-2b$
$24-18b$
$2b-4$
If $ax+2b=5c-dx$, what does x equal in terms of a, b, c, and d?
$5c-d-2b-a$
$a-d$
$(5c-2b)(a-d)$
$\frac{5c-d-2b}{a}$
$\frac{5c-2b}{a-d}$
If $(z-9)(z+3)=0$, what are the two possible values of z?
$z=-9$ abd $z=3$
$z=9$ abd $z=0$
$z=0$ abd $z=-3$
$z=9$ abd $z=-3$
$z=-12$ abd $z=12$
If $z^{2}-6z=16$, which of the following could be a value of $z^{2}+6z$?
$-8$
$112$
$110$
$18$
$108$
If $3\sqrt{ a}-10=2$, what is the value of a?
$16$
$4$
$32$
$64$
$12$
Given $\frac{(x+6)(x^{2}-2x-3)}{x^{2}+3x-18}=10$, find the value of x.
$18$
$4$
$12$
$9$
$12$
Solve the equation $\frac{5x}{8}-\frac{3x}{5}=2$.
$40$
$80$
$160$
$-80$
$20$
Answer Key
1 D
2 B
3 E
4 C
5 E
6 D
7 B
8 A
9 D
10 B
$2(5x-5)+5(2x+2)=$
$0$
$20x$
$20x-10$
$20x+10$
$10x^{2}+20+x+20$
If $x=a+2$, and $y=-8-a$ then $x+y=$
$6$
$10$
$2a-6$
$-10$
$-6$
If $x \ne -5$, then $\frac{x^{2}+3x-10}{x+5}-(x-2)=$
If $(a-\frac{1}{a})^{2}=8$, then $a^{2}+\frac{1}{a^{2}}=$
$8$
$6$
$10$
$12$
$100$
$(x+y)^{2}=16$, and $x^{2}+y^{2}=6$ then $xy=$
$5$
$10$
$6$
$4$
$16$
$(x+y)=2$, and $x^{2}-y^{2}=6$ then $x-y=$
$12$
$4$
$6$
$\frac{1}{3}$
$3$
$\frac{15y+3}{3}-5y=$
$1$
$0$
$10y+1$
$3$
$3y+1$
if $b^{2}-a^{2}=9$ then $5(a-b)(a+b)=$
$45$
$\frac{9}{5}$
$4$
$50$
$-45$
When $c \ne 3$, then $\frac{c^{2}-9}{c-3}=$
$c-3$
$1$
$c+3$
$3-c$
$o$
If $b>0$, and $b^{2}-1=10 \times 12$, then $b=$
$9$
$1$
$12$
$10$
$11$
Answer Key
1 B
2 E
3 0
4 C
5 A
6 D
7 A
8 E
9 C
10 E
If $3x+7=5x+1$
$2.5$
$3.5 $
$4 $
$3 $
$ 4.5$
What is the next term in the sequence: 6, 3, 10, 7, 14, 11, ...?
$19$
$15 $
$6 $
$ 17$
$ 18$
The area of the basis of Cylinder A is 8 times the area of the basis of Cylinder B. What is the radius of Cylinder A in terms of the radius of Cylinder B?
$r_{A}=\frac{r_{B}}{8}$
$r_{A}=8r_{B} $
$r_{A}=4r_{B} $
$r_{A}=2\sqrt{2}r_{B} $
$r_{A}=\frac{r_{B}}{4} $
If $x^{2}-2xy+y^{2}=121$, $x-y=$
$10$
$11 $
$12 $
$13 $
$14 $
If c is equal to the sum b and twice of a, which of the following is the average of b and c?
$a$
$b $
$c $
$a+b $
$b+c $
$f(x)=4x+8$, $f(c+3)=8$, $f(c)=$
$-8$
$0 $
$3 $
$8 $
$-3 $
$5^{n}.125^{m}=78,125$, $n+3m=$
$5$
$ 6$
$ 7$
$ 8$
$ 9$
$\frac{3b^{2}}{a^{3}}=27a^{2}$
$3a^{3}$
$9a^{3} $
$\frac{1}{9a^{3}} $
$\frac{1}{a^{3}} $
$\frac{1}{3a^{3}} $
Which of the following statements must be true about the x and y coordinates that satisfy the equation $ay-ax=0$, $a \ne 0$, $x \ne 0$ ,$y \ne 0$
$x>y$
$xy=1 $
$x=-y $
$y>x $
$x=y $
What is the length of the side of a cube whose volume is 125 cubic units?
$4$
$ 5$
$ 6$
$ 7$
$ 4.5$
Answer Key
1 D
2 E
3 D
4 B
5 D
6 D
7 C
8 E
9 E
10 B
If $\frac{1}{2}$ of a number is 3, what is $\frac{1}{3}$ of the number?
$1$
$2 $
$ 3$
$ 6$
$ 8$
If $x=-1$, then $x^{5}+x^{4}+x^{3}+x^{2}-5=$
$-10$
$-6 $
$-5$
$-3$
$-1$
If $f(x)=2^{x}+7x$, then $f(4)=$
$24$
$ 36$
$44 $
$54 $
$64 $
If $x-3=y$, then $(y-x)^{3}=$
$27$
$54 $
$ -54$
$ -27$
$ 81$
If $a>b$, and $\frac{a}{b}>0$, which of the following is true?
$a>0$
$b>0$
$ab>0$
I only
II only
III only
I and II only
I and III only
Which of the following is equal to $(\frac{x^{-7}y^{-5}}{x^{-3}y^{3}})^{-2}$
$x^{8}y^{16}$
$\frac{x^{8}}{y^{16}} $
$\frac{y^{16}}{x^{8}} $
$x^{4}y^{8}$
$x^{8}y^{8}$
What is the slope of the line passing through the points (-1,7) and (3,5)?
$\frac{1}{2}$
$-2$
$-\frac{1}{2} $
$1$
$2$
The symbol $\otimes$ represents a binary operation defined as $a \otimes b=3^{a}+2^{b}$, what is the value of $(-2)\otimes (-3)$
$-\frac{17}{72}$
$\frac{72}{17} $
$-72 $
$ 72$
$ \frac{17}{72}$
If $\sqrt{\frac{49}{x}}=\frac{7}{3}$
$6$
$9$
$25$
$49$
$147$
A bike that originally sold for $150 \$$ was on sale for $120 \$$. What was the rate of discount?
$15 \%$
$21 \%$
$20 \%$
$25 \% $
$30 \% $
Answer Key
1 B
2 C
3 C
4 D
5 C
6 A
7 C
8 E
9 B
10 C
If $ 0.10 < x < 0.12$, which of the following could be a value of $x$?
$9 \%$
$10 \% $
$11 \% $
$12 \% $
$13 \% $
If $\frac{xyz}{t}=w$ and $x$ and $t$ are doubled, what happens to the value of w
The value of $w$ is two times smaller.
The value of $w$ is halved.
The value of $w$ is four times greater.
The value of $w$ is doubled
The value of $w$ remains the same.
What is the tenth term of the pattern below?
$\frac{3}{2}$, $\frac{9}{4}$, $\frac{27}{8}$, $\frac{81}{16}$,...
$\frac{3}{2^{10}}$
$\frac{30}{20}$
$(\frac{3}{2})^{10}$
$\frac{3^{10}}{2}$
$\frac{300}{200}$
If $a > 0$ and $b < 0$, which of the following is always negative?
$-ab$
$a+b$
$|a|-|b|$
$\frac{a}{b}$
$b^{a}$
Which of the following number pairs is in the ratio $3:7$?
$\frac{1}{3}$,$\frac{1}{7}$
$\frac{1}{7}$,$\frac{1}{3}$
$\frac{1}{7}$,$\frac{3}{7}$
$7$,$\frac{1}{3}$
$1$,$\frac{1}{7}$
If $x=-\frac{1}{4}$, then $(-x)^{-3}+(\frac{1}{x})^{2}=$
$-80$
$-64$
$16 $
$64$
$80$
For which of the following values of $x$ is the relationship $x < x^{2} < x^{3}$ true?
$-3$
$-\frac{2}{3}$
$0$
$\frac{2}{3} $
$3$
$x^{2}+2xy+y^{2}=169$, $-|-(x+y)|=$
How many distincts factors does 900 have?
$2$
$ 3$
$ 4$
$ 5$
more than $5$
If $x=-\frac{1}{7}$, then which of the following is always positive for $n > 0$?
$x^{n}$
$n^{x}$
$nx$
$n-x$
$\frac{x}{n} $
Answer Key
1 C
2 E
3 C
4 D
5 B
6 E
7 3
8 -13
9 A
10 B
For how many positive integers, $n$, is true that $n^{2} \leq 3n$
$2$
$3$
$4$
$5$
more than 5
If $a^{4}=16$, then $3^{a}$
$3$
$9$
$16$
$27$
$81$
$\sqrt{20}\sqrt{5}=$
$2\sqrt{5}$
$10$
$4\sqrt{5}$
$5\sqrt{10}$
$10\sqrt{5}$
The sum of three positive consecutive even integers is x.
What is the value of the middle of the three integers?
$\frac{x}{3}-1$
$\frac{x}{3}+2$
$3x$
$\frac{x-2}{3}$
$\frac{x}{3}$
What is the average of $5^{10}$, $5^{20}$, $5^{30}$, $5^{40}$ and $5^{50}$?
$5^{9}+5^{19}+5^{29}+5^{39}+5^{49}$
$5^{30}$
$5^{149}$
$150$
$5^{29}$
Which of the following is equal to $(5^{6} \times 5^{9})^{10}$?
$25^{150}$
$25^{540}$
$5^{540}$
$5^{150}$
$5^{15}$
What is the value of $3^{\frac{1}{3}} \times 3^{\frac{2}{3}} \times 3^{\frac{3}{3}}$?
$3$
$9$
$27$
$30$
$81$
How many integers satisfy the inequality $|x| < 2 \pi$.
$0$
$3$
$4$
$7$
More than $7$
What is the average of $5^{a} \times 5^{b}=5^{300}$
$50$
$100$
$150$
$200$
$250$
If $5^{a}5^{b}=\frac{5^{c}}{5^{d}}$, what is d in terms of $a$, $b$ and $c$?
$\frac{c}{a+b}$
$c+ab$
$c-a-b$
$c+a-b$
$\frac{b}{ac}$
Answer Key
1 B
2 B
3 B
4 E
5 A
6 D
7 B
8 E
9 C
10 C
$2(5x-5)+5(2x+2)=$
$0$
$20x$
$20x-10$
$20x+10$
$10x^{2}+20+x+20$
If $x=a+2$, and $y=-8-a$ then $x+y=$
$6$
$10$
$2a-6$
$-10$
$-6$
If $x \ne -5$, then $\frac{x^{2}+3x-10}{x+5}-(x-2)=$
If $(a-\frac{1}{a})^{2}=8$, then $a^{2}+\frac{1}{a^{2}}=$
$8$
$6$
$10$
$12$
$100$
$(x+y)^{2}=16$, and $x^{2}+y^{2}=6$ then $xy=$
$5$
$10$
$6$
$4$
$16$
$(x+y)=2$, and $x^{2}-y^{2}=6$ then $x-y=$
$12$
$4$
$6$
$\frac{1}{3}$
$3$
$\frac{15y+3}{3}-5y=$
$1$
$0$
$10y+1$
$3$
$3y+1$
if $b^{2}-a^{2}=9$ then $5(a-b)(a+b)=$
$45$
$\frac{9}{5}$
$4$
$50$
$-45$
When $c \ne 3$, then $\frac{c^{2}-9}{c-3}=$
$c-3$
$1$
$c+3$
$3-c$
$o$
If $b>0$, and $b^{2}-1=10 \times 12$, then $b=$
$9$
$1$
$12$
$10$
$11$
Answer Key
1 B
2 E
3 0
4 C
5 A
6 D
7 A
8 E
9 C
10 E
Solve $15x-32=18-10x$
$-14$
$10$
$14$
$2$
$50$
Solve $\frac{x}{8}=\frac{x-2}{4}$
$12$
$4$
$6$
$-\frac{1}{2}$
$-6$
Which of the following are the factors of $t^{2}+8t+16$
$(t-4)(t-4)$
$(t-8)(t-2)$
$(t+8)(t+2)$
$(t+1)(t+16)$
$(t+4)(t+4)$
Solve for a in term of b, if $6a+12b=24$
$24-12b$
$2-\frac{1}{2}b$
$4-2b$
$24-18b$
$2b-4$
If $ax+2b=5c-dx$, what does x equal in terms of a, b, c, and d?
$5c-d-2b-a$
$a-d$
$(5c-2b)(a-d)$
$\frac{5c-d-2b}{a}$
$\frac{5c-2b}{a-d}$
If $(z-9)(z+3)=0$, what are the two possible values of z?
$z=-9$ abd $z=3$
$z=9$ abd $z=0$
$z=0$ abd $z=-3$
$z=9$ abd $z=-3$
$z=-12$ abd $z=12$
If $z^{2}-6z=16$, which of the following could be a value of $z^{2}+6z$?
$-8$
$112$
$110$
$18$
$108$
If $3\sqrt{ a}-10=2$, what is the value of a?
$16$
$4$
$32$
$64$
$12$
Given $\frac{(x+6)(x^{2}-2x-3)}{x^{2}+3x-18}=10$, find the value of x.
$18$
$4$
$12$
$9$
$12$
Solve the equation $\frac{5x}{8}-\frac{3x}{5}=2$.
$40$
$80$
$160$
$-80$
$20$
Answer Key
1 D
2 B
3 E
4 C
5 E
6 D
7 B
8 A
9 D
10 B
Which of the following is equivalent to $5^{9}$
$5^{4}+5^{4}+5^{1}$
$5^{2} \times 5^{4} \times 5^{3}$
$\frac{10^{9}}{2^{10}}$
$(5^{4})^{5}$
$\frac{5^{5}}{5^{4}}$
Which of the following is equivalent to $\sqrt{289}$
$14$
$15$
$16$
$17$
$18$
Which of the following is a perfect square?
$120$
$121$
$122$
$123$
$124$
Which of the following is equivalent to $3\sqrt{10}$
$3\sqrt{5} \times \sqrt{5}$
$\sqrt{90}$
$3\sqrt{5} + 3\sqrt{2}$
$3\sqrt{5}+3\sqrt{5}$
$\frac{3\sqrt{2}}{\sqrt{5}}$
Which of the following is equivalent to $10^{\frac{2}{5}}$
$\sqrt[5]{5}$
$\sqrt[5]{10}$
$\sqrt[5]{20}$
$\sqrt[5]{100}$
$\sqrt[5]{1000}$
Which of the following fractions is equivalent to $\frac{3}{6} \times \frac{2}{5}$?
$\frac{6}{30}$
$\frac{5}{30}$
$\frac{5}{11}$
$\frac{15}{12}$
$\frac{9}{30}$
Which of the following expressions is equivalent to $\frac{7}{6} \div \frac{5}{2}$?
$\frac{7}{30}+\frac{2}{30}$
$\frac{9}{6}+\frac{9}{5}$
$\frac{7}{8}+\frac{5}{8}$
$\frac{7}{6}+\frac{2}{5}$
$\frac{1}{7}+\frac{2}{35}$
If $3^{x}=729$, what is $x^{3}$?
What is the value of $||4|-|-7||$
$-11$
$-3$
$0$
$3$
$11$
What is the value of $(\sqrt{3}+\sqrt{5})^{2}-(\sqrt{8})^{2}$
$2\sqrt{15}$
$\sqrt{15}$
$0$
$15$
$30$
Answer Key
1 B
2 D
3 B
4 B
5 D
6 A
7 E
8 125
9 D
10 A
For how many positive integers, $n$, is true that $n^{2} \leq 3n$
$2$
$3$
$4$
$5$
more than 5
If $a^{4}=16$, then $3^{a}$
$3$
$9$
$16$
$27$
$81$
$\sqrt{20}\sqrt{5}=$
$2\sqrt{5}$
$10$
$4\sqrt{5}$
$5\sqrt{10}$
$10\sqrt{5}$
The sum of three positive consecutive even integers is x.
What is the value of the middle of the three integers?
$\frac{x}{3}-1$
$\frac{x}{3}+2$
$3x$
$\frac{x-2}{3}$
$\frac{x}{3}$
What is the average of $5^{10}$, $5^{20}$, $5^{30}$, $5^{40}$ and $5^{50}$?
$5^{9}+5^{19}+5^{29}+5^{39}+5^{49}$
$5^{30}$
$5^{149}$
$150$
$5^{29}$
Which of the following is equal to $(5^{6} \times 5^{9})^{10}$?
$25^{150}$
$25^{540}$
$5^{540}$
$5^{150}$
$5^{15}$
What is the value of $3^{\frac{1}{3}} \times 3^{\frac{2}{3}} \times 3^{\frac{3}{3}}$?
$3$
$9$
$27$
$30$
$81$
How many integers satisfy the inequality $|x| < 2 \pi$.
$0$
$3$
$4$
$7$
More than $7$
What is the average of $5^{a} \times 5^{b}=5^{300}$
$50$
$100$
$150$
$200$
$250$
If $5^{a}5^{b}=\frac{5^{c}}{5^{d}}$, what is d in terms of $a$, $b$ and $c$?
$\frac{c}{a+b}$
$c+ab$
$c-a-b$
$c+a-b$
$\frac{b}{ac}$
Answer Key
1 B
2 B
3 B
4 E
5 A
6 D
7 B
8 E
9 C
10 C
If $ 0.10 < x < 0.12$, which of the following could be a value of $x$?
$9 \%$
$10 \% $
$11 \% $
$12 \% $
$13 \% $
If $\frac{xyz}{t}=w$ and $x$ and $t$ are doubled, what happens to the value of w
The value of $w$ is two times smaller.
The value of $w$ is halved.
The value of $w$ is four times greater.
The value of $w$ is doubled
The value of $w$ remains the same.
What is the tenth term of the pattern below?
$\frac{3}{2}$, $\frac{9}{4}$, $\frac{27}{8}$, $\frac{81}{16}$,...
$\frac{3}{2^{10}}$
$\frac{30}{20}$
$(\frac{3}{2})^{10}$
$\frac{3^{10}}{2}$
$\frac{300}{200}$
If $a > 0$ and $b < 0$, which of the following is always negative?
$-ab$
$a+b$
$|a|-|b|$
$\frac{a}{b}$
$b^{a}$
Which of the following number pairs is in the ratio $3:7$?
$\frac{1}{3}$,$\frac{1}{7}$
$\frac{1}{7}$,$\frac{1}{3}$
$\frac{1}{7}$,$\frac{3}{7}$
$7$,$\frac{1}{3}$
$1$,$\frac{1}{7}$
If $x=-\frac{1}{4}$, then $(-x)^{-3}+(\frac{1}{x})^{2}=$
$-80$
$-64$
$16 $
$64$
$80$
For which of the following values of $x$ is the relationship $x < x^{2} < x^{3}$ true?
$-3$
$-\frac{2}{3}$
$0$
$\frac{2}{3} $
$3$
$x^{2}+2xy+y^{2}=169$, $-|-(x+y)|=$
How many distincts factors does 900 have?
$2$
$ 3$
$ 4$
$ 5$
more than $5$
If $x=-\frac{1}{7}$, then which of the following is always positive for $n > 0$?
$x^{n}$
$n^{x}$
$nx$
$n-x$
$\frac{x}{n} $
Answer Key
1 C
2 E
3 C
4 D
5 B
6 E
7 3
8 -13
9 A
10 B
If $\frac{1}{2}$ of a number is 3, what is $\frac{1}{3}$ of the number?
$1$
$2 $
$ 3$
$ 6$
$ 8$
If $x=-1$, then $x^{5}+x^{4}+x^{3}+x^{2}-5=$
$-10$
$-6 $
$-5$
$-3$
$-1$
If $f(x)=2^{x}+7x$, then $f(4)=$
$24$
$ 36$
$44 $
$54 $
$64 $
If $x-3=y$, then $(y-x)^{3}=$
$27$
$54 $
$ -54$
$ -27$
$ 81$
If $a>b$, and $\frac{a}{b}>0$, which of the following is true?
$a>0$
$b>0$
$ab>0$
I only
II only
III only
I and II only
I and III only
Which of the following is equal to $(\frac{x^{-7}y^{-5}}{x^{-3}y^{3}})^{-2}$
$x^{8}y^{16}$
$\frac{x^{8}}{y^{16}} $
$\frac{y^{16}}{x^{8}} $
$x^{4}y^{8}$
$x^{8}y^{8}$
What is the slope of the line passing through the points (-1,7) and (3,5)?
$\frac{1}{2}$
$-2$
$-\frac{1}{2} $
$1$
$2$
The symbol $\otimes$ represents a binary operation defined as $a \otimes b=3^{a}+2^{b}$, what is the value of $(-2)\otimes (-3)$
$-\frac{17}{72}$
$\frac{72}{17} $
$-72 $
$ 72$
$ \frac{17}{72}$
If $\sqrt{\frac{49}{x}}=\frac{7}{3}$
$6$
$9$
$25$
$49$
$147$
A bike that originally sold for $150 \$$ was on sale for $120 \$$. What was the rate of discount?
$15 \%$
$21 \%$
$20 \%$
$25 \% $
$30 \% $
Answer Key
1 B
2 C
3 C
4 D
5 C
6 A
7 C
8 E
9 B
10 C
If $3x+7=5x+1$
$2.5$
$3.5 $
$4 $
$3 $
$ 4.5$
What is the next term in the sequence: 6, 3, 10, 7, 14, 11, ...?
$19$
$15 $
$6 $
$ 17$
$ 18$
The area of the basis of Cylinder A is 8 times the area of the basis of Cylinder B. What is the radius of Cylinder A in terms of the radius of Cylinder B?
$r_{A}=\frac{r_{B}}{8}$
$r_{A}=8r_{B} $
$r_{A}=4r_{B} $
$r_{A}=2\sqrt{2}r_{B} $
$r_{A}=\frac{r_{B}}{4} $
If $x^{2}-2xy+y^{2}=121$, $x-y=$
$10$
$11 $
$12 $
$13 $
$14 $
If c is equal to the sum b and twice of a, which of the following is the average of b and c?
$a$
$b $
$c $
$a+b $
$b+c $
$f(x)=4x+8$, $f(c+3)=8$, $f(c)=$
$-8$
$0$
$3$
$-3$
$8$
$5^{n}.125^{m}=78,125$, $n+3m=$
$5$
$ 6$
$ 7$
$ 8$
$ 9$
$\frac{3b^{2}}{a^{3}}=27a^{2}$
$3a^{3}$
$9a^{3} $
$\frac{1}{9a^{3}} $
$\frac{1}{a^{3}} $
$\frac{1}{3a^{3}} $
Which of the following statements must be true about the x and y coordinates that satisfy the equation $ay-ax=0$, $a \ne 0$, $x \ne 0$ ,$y \ne 0$
$x>y$
$xy=1 $
$x=-y $
$y>x $
$x=y $
What is the length of the side of a cube whose volume is 125 cubic units?
$4$
$ 5$
$ 6$
$ 7$
$ 4.5$
Answer Key
1 D
2 E
3 D
4 B
5 D
6 D
7 C
8 E
9 E
10 B
If $3x+7=5x+1$
$2.5$
$3.5 $
$4 $
$3 $
$ 4.5$
What is the next term in the sequence: 6, 3, 10, 7, 14, 11, ...?
$19$
$15 $
$6 $
$ 17$
$ 18$
The area of the basis of Cylinder A is 8 times the area of the basis of Cylinder B. What is the radius of Cylinder A in terms of the radius of Cylinder B?
$r_{A}=\frac{r_{B}}{8}$
$r_{A}=8r_{B} $
$r_{A}=4r_{B} $
$r_{A}=2\sqrt{2}r_{B} $
$r_{A}=\frac{r_{B}}{4} $
If $x^{2}-2xy+y^{2}=121$, $x-y=$
$10$
$11 $
$12 $
$13 $
$14 $
If c is equal to the sum b and twice of a, which of the following is the average of b and c?
$a$
$b $
$c $
$a+b $
$b+c $
$f(x)=4x+8$, $f(c+3)=8$, $f(c)=$
$-8$
$0 $
$3 $
$8 $
$-3 $
$5^{n}.125^{m}=78,125$, $n+3m=$
$5$
$ 6$
$ 7$
$ 8$
$ 9$
$\frac{3b^{2}}{a^{3}}=27a^{2}$
$3a^{3}$
$9a^{3} $
$\frac{1}{9a^{3}} $
$\frac{1}{a^{3}} $
$\frac{1}{3a^{3}} $
Which of the following statements must be true about the x and y coordinates that satisfy the equation $ay-ax=0$, $a \ne 0$, $x \ne 0$ ,$y \ne 0$
$x>y$
$xy=1 $
$x=-y $
$y>x $
$x=y $
What is the length of the side of a cube whose volume is 125 cubic units?
$4$
$ 5$
$ 6$
$ 7$
$ 4.5$
Answer Key
1 D
2 E
3 D
4 B
5 D
6 D
7 C
8 E
9 E
10 B
If $\frac{1}{2}$ of a number is 3, what is $\frac{1}{3}$ of the number?
$1$
$2 $
$ 3$
$ 6$
$ 8$
If $x=-1$, then $x^{5}+x^{4}+x^{3}+x^{2}-5=$
$-10$
$-6 $
$-5$
$-3$
$-1$
If $f(x)=2^{x}+7x$, then $f(4)=$
$24$
$ 36$
$44 $
$54 $
$64 $
If $x-3=y$, then $(y-x)^{3}=$
$27$
$54 $
$ -54$
$ -27$
$ 81$
If $a>b$, and $\frac{a}{b}>0$, which of the following is true?
$a>0$
$b>0$
$ab>0$
I only
II only
III only
I and II only
I and III only
Which of the following is equal to $(\frac{x^{-7}y^{-5}}{x^{-3}y^{3}})^{-2}$
$x^{8}y^{16}$
$\frac{x^{8}}{y^{16}} $
$\frac{y^{16}}{x^{8}} $
$x^{4}y^{8}$
$x^{8}y^{8}$
What is the slope of the line passing through the points (-1,7) and (3,5)?
$\frac{1}{2}$
$-2$
$-\frac{1}{2} $
$1$
$2$
The symbol $\otimes$ represents a binary operation defined as $a \otimes b=3^{a}+2^{b}$, what is the value of $(-2)\otimes (-3)$
$-\frac{17}{72}$
$\frac{72}{17} $
$-72 $
$ 72$
$ \frac{17}{72}$
If $\sqrt{\frac{49}{x}}=\frac{7}{3}$
$6$
$9$
$25$
$49$
$147$
A bike that originally sold for $150 \$$ was on sale for $120 \$$. What was the rate of discount?
$15 \%$
$21 \%$
$20 \%$
$25 \% $
$30 \% $
Answer Key
1 B
2 C
3 C
4 D
5 C
6 A
7 C
8 E
9 B
10 C
If $ 0.10 < x < 0.12$, which of the following could be a value of $x$?
$9 \%$
$10 \% $
$11 \% $
$12 \% $
$13 \% $
If $\frac{xyz}{t}=w$ and $x$ and $t$ are doubled, what happens to the value of w
The value of $w$ is two times smaller.
The value of $w$ is halved.
The value of $w$ is four times greater.
The value of $w$ is doubled
The value of $w$ remains the same.
What is the tenth term of the pattern below?
$\frac{3}{2}$, $\frac{9}{4}$, $\frac{27}{8}$, $\frac{81}{16}$,...
$\frac{3}{2^{10}}$
$\frac{30}{20}$
$(\frac{3}{2})^{10}$
$\frac{3^{10}}{2}$
$\frac{300}{200}$
If $a > 0$ and $b < 0$, which of the following is always negative?
$-ab$
$a+b$
$|a|-|b|$
$\frac{a}{b}$
$b^{a}$
Which of the following number pairs is in the ratio $3:7$?
$\frac{1}{3}$,$\frac{1}{7}$
$\frac{1}{7}$,$\frac{1}{3}$
$\frac{1}{7}$,$\frac{3}{7}$
$7$,$\frac{1}{3}$
$1$,$\frac{1}{7}$
If $x=-\frac{1}{4}$, then $(-x)^{-3}+(\frac{1}{x})^{2}=$
$-80$
$-64$
$16 $
$64$
$80$
For which of the following values of $x$ is the relationship $x < x^{2} < x^{3}$ true?
$-3$
$-\frac{2}{3}$
$0$
$\frac{2}{3} $
$3$
$x^{2}+2xy+y^{2}=169$, $-|-(x+y)|=$
How many distincts factors does 900 have?
$2$
$ 3$
$ 4$
$ 5$
more than $5$
If $x=-\frac{1}{7}$, then which of the following is always positive for $n > 0$?
$x^{n}$
$n^{x}$
$nx$
$n-x$
$\frac{x}{n} $
Answer Key
1 C
2 E
3 C
4 D
5 B
6 E
7 3
8 -13
9 A
10 B
For how many positive integers, $n$, is true that $n^{2} \leq 3n$
$2$
$3$
$4$
$5$
more than 5
If $a^{4}=16$, then $3^{a}$
$3$
$9$
$16$
$27$
$81$
$\sqrt{20}\sqrt{5}=$
$2\sqrt{5}$
$10$
$4\sqrt{5}$
$5\sqrt{10}$
$10\sqrt{5}$
The sum of three positive consecutive even integers is x.
What is the value of the middle of the three integers?
$\frac{x}{3}-1$
$\frac{x}{3}+2$
$3x$
$\frac{x-2}{3}$
$\frac{x}{3}$
What is the average of $5^{10}$, $5^{20}$, $5^{30}$, $5^{40}$ and $5^{50}$?
$5^{9}+5^{19}+5^{29}+5^{39}+5^{49}$
$5^{30}$
$5^{149}$
$150$
$5^{29}$
Which of the following is equal to $(5^{6} \times 5^{9})^{10}$?
$25^{150}$
$25^{540}$
$5^{540}$
$5^{150}$
$5^{15}$
What is the value of $3^{\frac{1}{3}} \times 3^{\frac{2}{3}} \times 3^{\frac{3}{3}}$?
$3$
$9$
$27$
$30$
$81$
How many integers satisfy the inequality $|x| < 2 \pi$.
$0$
$3$
$4$
$7$
More than $7$
What is the average of $5^{a} \times 5^{b}=5^{300}$
$50$
$100$
$150$
$200$
$250$
If $5^{a}5^{b}=\frac{5^{c}}{5^{d}}$, what is d in terms of $a$, $b$ and $c$?
$\frac{c}{a+b}$
$c+ab$
$c-a-b$
$c+a-b$
$\frac{b}{ac}$
Answer Key
1 B
2 B
3 B
4 E
5 A
6 D
7 B
8 E
9 C
10 C
Which of the following is equivalent to $5^{9}$
$5^{4}+5^{4}+5^{1}$
$5^{2} \times 5^{4} \times 5^{3}$
$\frac{10^{9}}{2^{10}}$
$(5^{4})^{5}$
$\frac{5^{5}}{5^{4}}$
Which of the following is equivalent to $\sqrt{289}$
$14$
$15$
$16$
$17$
$18$
Which of the following is a perfect square?
$120$
$121$
$122$
$123$
$124$
Which of the following is equivalent to $3\sqrt{10}$
$3\sqrt{5} \times \sqrt{5}$
$\sqrt{90}$
$3\sqrt{5} + 3\sqrt{2}$
$3\sqrt{5}+3\sqrt{5}$
$\frac{3\sqrt{2}}{\sqrt{5}}$
Which of the following is equivalent to $10^{\frac{2}{5}}$
$\sqrt[5]{5}$
$\sqrt[5]{10}$
$\sqrt[5]{20}$
$\sqrt[5]{100}$
$\sqrt[5]{1000}$
Which of the following fractions is equivalent to $\frac{3}{6} \times \frac{2}{5}$?
$\frac{6}{30}$
$\frac{5}{30}$
$\frac{5}{11}$
$\frac{15}{12}$
$\frac{9}{30}$
Which of the following expressions is equivalent to $\frac{7}{6} \div \frac{5}{2}$?
$\frac{7}{30}+\frac{2}{30}$
$\frac{9}{6}+\frac{9}{5}$
$\frac{7}{8}+\frac{5}{8}$
$\frac{7}{6}+\frac{2}{5}$
$\frac{1}{7}+\frac{2}{35}$
If $3^{x}=729$, what is $x^{3}$?
What is the value of $||4|-|-7||$
$-11$
$-3$
$0$
$3$
$11$
What is the value of $(\sqrt{3}+\sqrt{5})^{2}-(\sqrt{8})^{2}$
$2\sqrt{15}$
$\sqrt{15}$
$0$
$15$
$30$
Answer Key
1 B
2 D
3 B
4 B
5 D
6 A
7 E
8 125
9 D
10 A
Solve $15x-32=18-10x$
$-14$
$10$
$14$
$2$
$50$
Solve $\frac{x}{8}=\frac{x-2}{4}$
$12$
$4$
$6$
$-\frac{1}{2}$
$-6$
Which of the following are the factors of $t^{2}+8t+16$
$(t-4)(t-4)$
$(t-8)(t-2)$
$(t+8)(t+2)$
$(t+1)(t+16)$
$(t+4)(t+4)$
Solve for a in term of b, if $6a+12b=24$
$24-12b$
$2-\frac{1}{2}b$
$4-2b$
$24-18b$
$2b-4$
If $ax+2b=5c-dx$, what does x equal in terms of a, b, c, and d?
$5c-d-2b-a$
$a-d$
$(5c-2b)(a-d)$
$\frac{5c-d-2b}{a}$
$\frac{5c-2b}{a-d}$
If $(z-9)(z+3)=0$, what are the two possible values of z?
$z=-9$ abd $z=3$
$z=9$ abd $z=0$
$z=0$ abd $z=-3$
$z=9$ abd $z=-3$
$z=-12$ abd $z=12$
If $z^{2}-6z=16$, which of the following could be a value of $z^{2}+6z$?
$-8$
$112$
$110$
$18$
$108$
If $3\sqrt{ a}-10=2$, what is the value of a?
$16$
$4$
$32$
$64$
$12$
Given $\frac{(x+6)(x^{2}-2x-3)}{x^{2}+3x-18}=10$, find the value of x.
$18$
$4$
$12$
$9$
$12$
Solve the equation $\frac{5x}{8}-\frac{3x}{5}=2$.
$40$
$80$
$160$
$-80$
$20$
Answer Key
1 D
2 B
3 E
4 C
5 E
6 D
7 B
8 A
9 D
10 B
$2(5x-5)+5(2x+2)=$
$0$
$20x$
$20x-10$
$20x+10$
$10x^{2}+20+x+20$
If $x=a+2$, and $y=-8-a$ then $x+y=$
$6$
$10$
$2a-6$
$-10$
$-6$
If $x \ne -5$, then $\frac{x^{2}+3x-10}{x+5}-(x-2)=$
If $(a-\frac{1}{a})^{2}=8$, then $a^{2}+\frac{1}{a^{2}}=$
$8$
$6$
$10$
$12$
$100$
$(x+y)^{2}=16$, and $x^{2}+y^{2}=6$ then $xy=$
$5$
$10$
$6$
$4$
$16$
$(x+y)=2$, and $x^{2}-y^{2}=6$ then $x-y=$
$12$
$4$
$6$
$\frac{1}{3}$
$3$
$\frac{15y+3}{3}-5y=$
$1$
$0$
$10y+1$
$3$
$3y+1$
if $b^{2}-a^{2}=9$ then $5(a-b)(a+b)=$
$45$
$\frac{9}{5}$
$4$
$50$
$-45$
When $c \ne 3$, then $\frac{c^{2}-9}{c-3}=$
$c-3$
$1$
$c+3$
$3-c$
$o$
If $b>0$, and $b^{2}-1=10 \times 12$, then $b=$
$9$
$1$
$12$
$10$
$11$
Answer Key
1 B
2 E
3 0
4 C
5 A
6 D
7 A
8 E
9 C
10 E