Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. math exams: PCAT Quantitative Practice Questions -4

Tuesday, August 30, 2011

PCAT Quantitative Practice Questions -4

Pharmacy College Admission Test

  1. $2(5x-5)+5(2x+2)=$
    1. $0$
    2. $20x$
    3. $20x-10$
    4. $20x+10$

  2. If $x=a+2$, and $y=-8-a$ then $x+y=$

    1. $10$
    2. $2a-6$
    3. $-10$
    4. $-6$

  3. If $x \ne -5$, then $\frac{x^{2}+3x-10}{x+5}-(x-2)=$

  4. If $(a-\frac{1}{a})^{2}=8$, then $a^{2}+\frac{1}{a^{2}}=$

    1. $8$
    2. $6$
    3. $10$
    4. $12$

  5. $(x+y)^{2}=16$, and $x^{2}+y^{2}=6$ then $xy=$

    1. $5$
    2. $10$
    3. $6$
    4. $4$

  6. $(x+y)=2$, and $x^{2}-y^{2}=6$ then $x-y=$

    1. $12$
    2. $4$
    3. $6$
    4. $\frac{1}{3}$

  7. $\frac{15y+3}{3}-5y=$

    1. $1$
    2. $0$
    3. $10y+1$
    4. $3$


  8. if $b^{2}-a^{2}=9$ then $5(a-b)(a+b)=$

    1. $\frac{9}{5}$
    2. $4$
    3. $50$
    4. $-45$

  9. When $c \ne 3$, then $\frac{c^{2}-9}{c-3}=$

    1. $c-3$
    2. $1$
    3. $c+3$
    4. $3-c$

  10. If $b>0$, and $b^{2}-1=10 \times 12$, then $b=$

    1. $1$
    2. $12$
    3. $10$
    4. $11$


    Answer Key
    1 B
    2 D
    3 0
    4 C
    5 A
    6 D
    7 A
    8 D
    9 C
    10 D

No comments:

Post a Comment