- If $n \ne 0$ , $(2)^{5n}(8)^{7n}(32)^{3n}$
- $(32)^{15n}$
- $(8)^{15n} $
- $(2)^{5n} $
- $ (2)^{41n}$
- $(2)^{21n} $
- $\sqrt{32}+5\sqrt{50}-5\sqrt{2}$
- $24\sqrt{2}$
- $24\sqrt{8} $
- $20\sqrt{2} $
- $4\sqrt{2} $
- $24\sqrt{32} $
- $\sqrt{1125}+7\sqrt{180}-5\sqrt{5}$
- $5\sqrt{5}$
- $-5\sqrt{5} $
- $62\sqrt{5} $
- $62\sqrt{15} $
- $62\sqrt{3} $
- $\sqrt[3]{\frac{-54}{-2}}$
- $3$
- $-3 $
- $8 $
- $-\sqrt{3} $
- $\sqrt{3} $
- $\sqrt{3} \div \sqrt[5]{3}$
- $3^{5}$
- $\sqrt{3} $
- $\sqrt[10]{3} $
- $\sqrt[5]{3} $
- $\sqrt[10]{27} $
- Simplify $\frac{4a^{0}}{(4a)^{0}}$
- Simplify $\frac{6x^{5}+12x^{4}}{3x^{3}}$
- $2x^{2}+x$
- $2x^{2}+4 $
- $2x(x+2)$
- $2x+4$
- $2x^{2}-4x$
- Simplify $\frac{x^{2}-3x}{x^{2}-9}+\frac{3}{x+3}$
- $x^{2}-4x+4$
- $x-4 $
- $x+4$
- $1$
- $\frac{1}{4}$
- Simplify $\frac{\sqrt[3]{x}}{\sqrt[6]{x}}$
- $\sqrt{x^{6}}$
- $\sqrt[3]{x}$
- $\sqrt[6]{x}$
- $x^{3}$
- $x^{6}$
- Simplify $\frac{x^{4}-y^{4}}{x^{2}+y^{2}}$
- $x^{2}+y^{2}$
- $x^{2}-y^{2} $
- $x^{2}y^{2}$
- $0$
- $2\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$
Answer Key 1 D 2 A 3 C 4 A 5 E 6 4 7 C 8 D 9 C 10 B
This site prepare students for math exams, SAT, GRE, GMAT,CLEP practice test, CLEP college Algebra,CLEP precalculus,CLEP Mathematics
Thursday, June 30, 2011
CLEP College Algebra Practice Questions -- (Algebraic operations)
Wednesday, June 29, 2011
CLEP College Algebra Practice Questions -- (Equations )
- $\frac{9}{x+5}=\frac{3}{x+1}$
- $1$
- $3 $
- $ 5$
- $9 $
- $ 0$
- $xy+5y=10$ and $x+2=7$, then $y=$
- $0$
- $1 $
- $ 5$
- $ 7$
- $ 2$
- $\frac{9x}{5}=(a^{7}-1)^{3}$ and $a=-1$, solve for $x$.
- $-40$
- $-\frac{40}{9} $
- $\frac{40}{9} $
- $\frac{35}{9} $
- $0 $
- $\frac{18}{x^{2}+6x+27}=1$
- $\{-3,3\}$
- $\{-3\} $
- $\{3\} $
- $\{-3,0\} $
- $\{-3,-3\} $
- Find the solution of the following equation : $|5x-1|=9$
- $\{2\}$
- $\{-\frac{8}{5}\} $
- $\{-\frac{8}{5},2\} $
- $\{\frac{9}{5}\} $
- $\{\frac{1}{5}\} $
- If $a=(b+5)^{2}$ and $b=-5$, what is $a$?
- $-5$
- $5 $
- $0 $
- $1 $
- $2 $
- Solve $x^{2}+2x+11=0$
- $-1+\sqrt{10}$ or $-1-\sqrt{10}$
- $1+i\sqrt{10}$ or $-1-i\sqrt{10}$
- or $-1-i\sqrt{10}$
- $-1+i\sqrt{10}$ or $-1-i\sqrt{10}$
- $-1+i\sqrt{10}$
- If $\frac{a}{b}=5$ then $a^{2}-25b^{2}+7=$
- $0$
- $7 $
- $ -1$
- $ 25$
- $ 5$
- Solve $9x-6 \leq 5x+2$
- $x \leq 2$
- $x \geq 2 $
- $ x \leq -2$
- $ x \geq -2$
- $x < 2 $
- Solve $\frac{3}{x}=\frac{2}{x-1}$
- $-3$
- $2 $
- $ -2$
- $ 3$
- There is no solution
1 | A |
2 | B |
3 | B |
4 | E |
5 | C |
6 | C |
7 | D |
8 | B |
9 | A |
10 | D |
Tuesday, June 28, 2011
CLEP College Algebra Practice Questions - 5
- Find the indicated root $\sqrt[3]{-64}$
- $-4$
- $-16 $
- $ 16$
- $4 $
- Cannot be evaluated
- $3^{3x}=9^{x-1}$
- $2$
- $-2 $
- $\frac{1}{2} $
- $\frac{1}{3} $
- $3 $
- $3\sqrt{20}+6\sqrt{45}$
- $24\sqrt{5}$
- $9\sqrt{65} $
- $3\sqrt{5} $
- $20\sqrt{5} $
- $18\sqrt{5} $
- $2a^{2}-3(b-c)^{2}$
- $[\sqrt{2}a-\sqrt{3}b+\sqrt{3}c][\sqrt{2}a+\sqrt{3}b-\sqrt{3}c]$
- $[\sqrt{2}a-\sqrt{3}b+\sqrt{3}c][\sqrt{2}a-\sqrt{3}b+\sqrt{3}c]$
- $[\sqrt{2}a-\sqrt{3}b.\sqrt{3}c][\sqrt{2}a+\sqrt{3}b.\sqrt{3}c]$
- $[2a-3b+3c][2a+3b-3c]$
- $[\sqrt{2}a+\sqrt{3}b+\sqrt{3}c][\sqrt{2}a+\sqrt{3}b+\sqrt{3}c]$
- $(2\sqrt{5}+5\sqrt{2})(5\sqrt{5}-2\sqrt{2})$
- $30-21\sqrt{10}$
- $30+21\sqrt{10} $
- $-30+21\sqrt{10} $
- $-10 $
- $+10 $
- $x^{3}-36x=0$
- $-6$ and $6$
- $-3$, $0$ and $3$
- $-6$, $0$ and $6$
- $36 $
- $6 $
- $g(x)=-2x^{2}+5x-1$
$g(-5)$
- $log_{25}(\frac{1}{125})=$
- $\frac{-3}{2}$
- $\frac{2}{3} $
- $\frac{3}{2} $
- $ -3$
- $ 2$
- If $log_{b}(5)=0.81$ and $log_{b}(3)=0.13$ find $log_{b}(15)$
- $0.1053$
- $0.94 $
- $0.10 $
- $0.9 $
- $0.95 $
- If $log_{5}N=2$, find $N$
- $\frac{5}{2}$
- $10 $
- $\frac{2}{5} $
- $log_{2}5 $
- $ 25$
Monday, June 27, 2011
CLEP College Algebra Practice Questions - 4
- $(3x-5)^{2}=$
- $9x^{2}-30x-25$
- $9x^{2}+30x+25 $
- $39x-25 $
- $9x^{2}-25 $
- $9x^{2}-30x+25 $
- $5^{x+1}=25^{3x+1}$, then $x=$
- $\frac{1}{5}$
- $5 $
- $-\frac{1}{5} $
- $0 $
- $\frac{1}{3} $
- $log_{3}(x+5)=3$
- $10$
- $22 $
- $27 $
- $30 $
- $32 $
- $f(x)=7-3x^{3}$
- $\sqrt[3]{\frac{7-x}{3}}$
- $ \frac{\sqrt[3]{7-x}}{3}$
- $\sqrt[3]{\frac{x-7}{3}} $
- $\frac{1}{7-3x^{3}}$
- $7x^{3}+3$
- $f(x)=3x+1$ and $g(x)=5x-1$
- $15x+2$
- $15x $
- $15x^{2}+x+2 $
- $15x+4 $
- $15x-2 $
- Which quadrants of the xy-plane contain points of the graph of $3x-y>1$
- $I$, $II$ and $III$ only
- $I$, $II$ and $IV$ only
- $I$, $III$ and $IV$ only
- $II$ $III$ and $IV$ only
- $I$, $II$, $III$ and $III$ only
- $(\sqrt{3}i)^{4}=$
- $9$
- $-9 $
- $9i $
- $-9i $
- $-\sqrt{3} $
- What are all real values of $x$ for which $\frac{2}{5-x}=\frac{1}{5}-\frac{1}{x}$
- $x=-5$ only
- $x=5 $ only
- $x=-5 $
- $x=-5 $ and $x=0$
- $x=-5 $ and $x=-5$
- When $\frac{5+6i}{1+i}$ is expressed in the form $a+bi$, what is the value of $a$.
- If $x$, $2x+1$ and $7x+5$ are the first three terms of an arithmetic progression, then $x=$
- $-\frac{3}{4}$
- $-3$
- $0 $
- $\frac{7}{5} $
- $\frac{1}{5} $
Sunday, June 26, 2011
CLEP College Algebra Practice Questions - 3
- The reduced form of $\sqrt{162x^{11}y^{17}}$ is:
- $18x^{5}y^{8}\sqrt{2xy}$
- $9x^{5}y^{8}\sqrt{2} $
- $3x^{5}y^{8}\sqrt{2xy} $
- $9x^{4}y^{4}\sqrt{2xy}$
- $9x^{5}y^{8}\sqrt{2xy}$
- $\frac{2\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}$ is equal to:
- $-2$
- $1 $
- $\frac{2x-y}{x-y} $
- $ \frac{2x-\sqrt{xy}+y}{x-y} $
- $\frac{2x-3\sqrt{xy}+y}{x-y} $
- Solve the equation: $2x^{6}+52x^{3}-54=0$
- $-27$, $1$
- $+3 $, $-1$
- $-3 $
- $1 $, $27$
- $-3 $
- The reduced form of $\frac{\frac{1}{x+y}-\frac{1}{y}}{x}$ is
- $0$
- $1$
- $\frac{1}{xy+y^{2}}$
- $-\frac{1}{xy+y^{2}} $
- $xy+y^{2} $
- Solve the equation: $\frac{1}{x-2}+\frac{1}{x+2}=\frac{1}{x^{2}-4}$
- $-\frac{1}{2}$
- $\frac{1}{2} $
- $\frac{1}{4} $
- $ 2$
- $1 $
- Which factors $5x^{3}-3x^{2}-20x+12$ completely?
- $(5x+3)(x+2)^{2}$
- $(5x-3)(x+4)(x-1) $
- $(5x+3)(x^{2}-4) $
- $(5x^{2}+3)(x-4) $
- $(5x-3)(x^{2}+4) $
- Reduced $(\frac{7a^{-5}}{5c^{\frac{1}{2}}})^{-1}$
- $\sqrt{\frac{7a^{5}}{5c}}$
- $\frac{-14a^{5}}{5c}$
- $\frac{7a^{5}\sqrt{c}}{5}$
- $ \frac{5a^{5}}{7\sqrt{c}}$
- $ \frac{5}{7}a^{5}\sqrt{c}$
Saturday, June 25, 2011
CLEP College Algebra Practice Questions - 2
- Determine the range of the following function : $f(x)=-x^{4}+5$
- $y \geq 5$
- $y \geq -5 $
- $y \geq 4 $
- $y \leq -4 $
- $y \leq 5 $
- Solve the equation : $3(6x+2)=2x$
- $x=- \frac{3}{8}$
- $x=\frac{3}{8} $
- $ x=\frac{8}{3}$
- $x=-\frac{8}{3} $
- $x=-3 $
- What is the multiplicative inverse of $-7$?
- $\frac{1}{7}$
- $-\frac{1}{7} $
- $ 0$
- $7 $
- $-7 $
- Simplify : $\sqrt{169}.\sqrt{81}.\sqrt{196}$
- $13689$
- $ 21294$
- $1638 $
- $1764 $
- $12356 $
- Factor: $b^{2}-121$
- $(b-11)(b+11)$
- $(b^{2}-11)(b^{2}+11) $
- $ (b^{2}+11)(b^{2}+11)$
- $(b-11)(b-11) $
- $(b+11)(b+11) $
- Solve: $1+\frac{1}{x}=\frac{12}{x^{2}}$
- $x=-4$ or $x=3$
- $x= 4$ or $x=-3$
- $x=-4 $ or $x=-4$
- $x=-3 $ or $x=3$
- $x= 6$ or $x=-2$
- Factor the following equation: $a^{2}-2a-35$
- $(a-7)(a+5)$
- $(a+7)(a+5) $
- $ (a-5)(a-7)$
- $(a-1)(a+35) $
- $(a-35)(a+1) $
- Solve the following inequality: $9(6-2x) \leq -12$
- $x\geq 11$
- $x \leq \frac{11}{3} $
- $x \geq \frac{11}{3} $
- $ x\geq$ 3
- $ x \leq$ -11
- Determine the x-intercepts of the following parabola: $y=3x^{2}+x-14$
- $(2,0)$ and $(-\frac{7}{3},0)$
- $(2,0) $ and $(-3,0)$
- $(-\frac{3}{7},0) $ and $(-4,0)$
- $ (0,2)$ and $(0,-\frac{7}{3})$
- $(0,-\frac{7}{3}) $ and $(2,0)$
- A Graph of $x^{2} + y^{2} = 9$ is a
- Parabola
- Hyperbola
- Circle
- Line
- ellipse
Friday, June 24, 2011
CLEP College Mathematics Practice Questions - 1
- Simplify the following expression : $8x+3-3x-7$
- $5x-4 $
- $5x+4 $
- $11x-4 $
- $10x-4 $
- $-5x-4 $
- Determine the mean of the numbers : 20, 34, 36, 52, 60.
- $35 $
- $40.1 $
- $40.4 $
- $40.6 $
- $50 $
- What is the rule of $f+g$ if $f(x)=10x+7$ and $g(x)=3x$
- $30x+7 $
- $30x+21 $
- $7x+7 $
- $10x-7 $
- $13x+7 $
- What percent of 30 is 13
- $43.33$
- $43 $
- $80 $
- $72.3 $
- $35 $
- Find the inverse of the function $f(x)=-\frac{9}{5}x+1$
- $b=-\frac{9}{5}a+5$
- $ a=\frac{9}{5}b-1$
- $ b=-\frac{9}{5}(a-1)$
- $ b=-\frac{9}{5}a-\frac{9}{5}$
- $ a=-\frac{9}{5}b-1$
- What is the name give to two angles that add up to 180
- $Complemtary$
- $Adjacent $
- $straight $
- $right $
- $supplementary $
- Determine the mode of the following numbers : 6,7,7,5,5,5,9
- $5$
- $5.5 $
- $6.29 $
- $7 $
- $7.5 $
- Which of the following expressions is the same as $\frac{a^{-7}b^{2}}{a^{-3}}$
- $\frac{a^{-4}}{b^{2}}$
- $\frac{b^{2}}{a^{4}} $
- $\frac{b^{2}}{a^{-4}} $
- $b^{2}a^{-4}$
- $ a^{4}b^{2}$
- Determine the range of the following set : 5.6, 10.2, 7.3, 9.9, 8.1, 9.7
- $2.9$
- $4.3 $
- $10.2 $
- $2.1 $
- $4.6 $
- If $f(x)=x^{5}$ and $g(x)=x^{2}-1$, what is the domain restriction on $f.g$
- $x \leq 11$
- $ x \neq 1 $
- $x \geq 1 $
- There is no restriction
- $ x\leq 5 $
Thursday, June 23, 2011
GMAT Besic Equations
- $3(x-2)+6=2x$
- $\frac{1}{3}x-1=\frac{5}{6}+\frac{7}{2}$
- $\frac{7x-3}{7}=x+2$
- $0.16x+1.1=0.2x+0.96$
SAT Practice Questions - 1
- $2(5x-5)+5(2x+2)=$
- $0$
- $20x$
- $20x-10$
- $20x+10$
- $10x^{2}+20+x+20$
- If $x=a+2$, and $y=-8-a$ then $x+y=$
- $6$
- $10$
- $2a-6$
- $-10$
- $-6$
- If $x \ne -5$, then $\frac{x^{2}+3x-10}{x+5}-(x-2)=$
- If $(a-\frac{1}{a})^{2}=8$, then $a^{2}+\frac{1}{a^{2}}=$
- $8$
- $6$
- $10$
- $12$
- $100$
- $(x+y)^{2}=16$, and $x^{2}+y^{2}=6$ then $xy=$
- $5$
- $10$
- $6$
- $4$
- $16$
- $(x+y)=6$, and $x^{2}-y^{2}=2$ then $x-y=$
- $12$
- $4$
- $6$
- $\frac{1}{3}$
- $3$
- $\frac{15y+3}{3}-5y=$
- $1$
- $0$
- $10y+1$
- $3$
- $3y+1$
- if $b^{2}-a^{2}=9$ then $5(a-b)(a+b)=$
- $45$
- $\frac{9}{5}$
- $4$
- $50$
- $-45$
- When $c \ne 3$, then $\frac{c^{2}-9}{c-3}=$
- $c-3$
- $1$
- $c+3$
- $3-c$
- $o$
- If $b>0$, and $b^{2}-1=10 \times 12$, then $b=$
- $9$
- $1$
- $12$
- $10$
- $11$
Answer Key 1 B 2 E 3 0 4 C 5 A 6 D 7 A 8 E 9 C 10 E
CLEP College Algebra Practice Questions - 1
- $(3x-1)^{2} $
- $3x^{2}+1$
- $9x^{2}-1$
- $9x^{2}+1$
- $9x^{2}-6x+1$
- $9x^{2}-3x+1$
- Which of the following is a factor of $9-(x+y)^{2}$
- $(x+y)^{2}$
- $(x+y)$
- $3-x+y$
- $3+x+y$
- $9+x+y$
- $3t(2t^{2}+1)-(4-2t^{3}+10t)+1$
- $8t^{2}+7t-3$
- $8t^{2}+7t+1$
- $8t^{2}-7t-3$
- $8t^{2}-7t-4$
- $2t^{3}-7t+4$
- If $x+3=y$ What is the value of $|y-x|+|x-y|$
- $-6$
- $0$
- $3$
- $6$
- $-3$
- $\frac{\frac{x^{2}-4}{x+1}}{\frac{x-2}{x-1}}$
- $\frac{x-1}{x+2}$
- $\frac{(x-1)(x+2)}{x+1}$
- $\frac{x^{2}-x-2}{x+1}$
- $\frac{1}{(x-1)(x+1)}$
- $\frac{x+2}{(x-1)(x+1)}$
- Which of the following is a factor of $2x^{2}+4x-9$
- $x+\frac{2-\sqrt{22}}{2}$
- $x-2-\frac{\sqrt{22}}{2}$
- $x+2-\frac{\sqrt{22}}{2}$
- $x-\frac{2+\sqrt{22}}{2}$
- $x+2+\frac{\sqrt{22}}{2}$
- $\frac{(n+2)!}{n+1}-n=$
- $0$
- $2$
- $n+2$
- $(n+1)!$
- $n+1$
- Of the following which is greatest?
- $3^{(5^{7})}$
- $(3^{5})^{7}$
- $5^{(3^{7})}$
- $(5^{3})^{7}$
- $7^{(5^{3})}$
- Which of the following gives all values of x for wich $|x-3| \leq 7$?
- $\{x/ -10 \leq x \leq 4 \}$
- $\{x/ -7 \leq x \leq 3 \}$
- $\{x/ -10 \leq x \leq -3 \}$
- $\{x/ -10 \leq x \leq -4 \}$
- $\{x/ -4 \leq x \leq -3 \}$
- Which of the following are the solutions of the equation $x^{2}-x-1=0$ ?
- $\frac{-1+\sqrt{5}}{2}$ or $\frac{-1-\sqrt{5}}{2}$
- $-1+\frac{\sqrt{5}}{2}$ or $-1-\frac{\sqrt{5}}{2}$
- $\frac{1+\sqrt{5}}{2}$ or $\frac{1-\sqrt{5}}{2}$
- $1+\frac{\sqrt{5}}{2}$ or $1-\frac{\sqrt{5}}{2}$
- $\frac{1+i\sqrt{5}}{2}$ or $\frac{1-i\sqrt{5}}{2}$
1 | D |
2 | D |
3 | C |
4 | D |
5 | B |
6 | D |
7 | B |
8 | A |
9 | C |
10 | C |
Subscribe to:
Posts (Atom)