- If n \ne 0 , (2)^{5n}(8)^{7n}(32)^{3n}
- (32)^{15n}
- (8)^{15n}
- (2)^{5n}
- (2)^{41n}
- (2)^{21n}
- \sqrt{32}+5\sqrt{50}-5\sqrt{2}
- 24\sqrt{2}
- 24\sqrt{8}
- 20\sqrt{2}
- 4\sqrt{2}
- 24\sqrt{32}
- \sqrt{1125}+7\sqrt{180}-5\sqrt{5}
- 5\sqrt{5}
- -5\sqrt{5}
- 62\sqrt{5}
- 62\sqrt{15}
- 62\sqrt{3}
- \sqrt[3]{\frac{-54}{-2}}
- 3
- -3
- 8
- -\sqrt{3}
- \sqrt{3}
- \sqrt{3} \div \sqrt[5]{3}
- 3^{5}
- \sqrt{3}
- \sqrt[10]{3}
- \sqrt[5]{3}
- \sqrt[10]{27}
- Simplify \frac{4a^{0}}{(4a)^{0}}
- Simplify \frac{6x^{5}+12x^{4}}{3x^{3}}
- 2x^{2}+x
- 2x^{2}+4
- 2x(x+2)
- 2x+4
- 2x^{2}-4x
- Simplify \frac{x^{2}-3x}{x^{2}-9}+\frac{3}{x+3}
- x^{2}-4x+4
- x-4
- x+4
- 1
- \frac{1}{4}
- Simplify \frac{\sqrt[3]{x}}{\sqrt[6]{x}}
- \sqrt{x^{6}}
- \sqrt[3]{x}
- \sqrt[6]{x}
- x^{3}
- x^{6}
- Simplify \frac{x^{4}-y^{4}}{x^{2}+y^{2}}
- x^{2}+y^{2}
- x^{2}-y^{2}
- x^{2}y^{2}
- 0
- 2\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
Answer Key 1 D 2 A 3 C 4 A 5 E 6 4 7 C 8 D 9 C 10 B
This site prepare students for math exams, SAT, GRE, GMAT,CLEP practice test, CLEP college Algebra,CLEP precalculus,CLEP Mathematics
Thursday, June 30, 2011
CLEP College Algebra Practice Questions -- (Algebraic operations)
Wednesday, June 29, 2011
CLEP College Algebra Practice Questions -- (Equations )
- \frac{9}{x+5}=\frac{3}{x+1}
- 1
- 3
- 5
- 9
- 0
- xy+5y=10 and x+2=7, then y=
- 0
- 1
- 5
- 7
- 2
- \frac{9x}{5}=(a^{7}-1)^{3} and a=-1, solve for x.
- -40
- -\frac{40}{9}
- \frac{40}{9}
- \frac{35}{9}
- 0
- \frac{18}{x^{2}+6x+27}=1
- \{-3,3\}
- \{-3\}
- \{3\}
- \{-3,0\}
- \{-3,-3\}
- Find the solution of the following equation : |5x-1|=9
- \{2\}
- \{-\frac{8}{5}\}
- \{-\frac{8}{5},2\}
- \{\frac{9}{5}\}
- \{\frac{1}{5}\}
- If a=(b+5)^{2} and b=-5, what is a?
- -5
- 5
- 0
- 1
- 2
- Solve x^{2}+2x+11=0
- -1+\sqrt{10} or -1-\sqrt{10}
- 1+i\sqrt{10} or -1-i\sqrt{10}
- or -1-i\sqrt{10}
- -1+i\sqrt{10} or -1-i\sqrt{10}
- -1+i\sqrt{10}
- If \frac{a}{b}=5 then a^{2}-25b^{2}+7=
- 0
- 7
- -1
- 25
- 5
- Solve 9x-6 \leq 5x+2
- x \leq 2
- x \geq 2
- x \leq -2
- x \geq -2
- x < 2
- Solve \frac{3}{x}=\frac{2}{x-1}
- -3
- 2
- -2
- 3
- There is no solution
1 | A |
2 | B |
3 | B |
4 | E |
5 | C |
6 | C |
7 | D |
8 | B |
9 | A |
10 | D |
Tuesday, June 28, 2011
CLEP College Algebra Practice Questions - 5
- Find the indicated root \sqrt[3]{-64}
- -4
- -16
- 16
- 4
- Cannot be evaluated
- 3^{3x}=9^{x-1}
- 2
- -2
- \frac{1}{2}
- \frac{1}{3}
- 3
- 3\sqrt{20}+6\sqrt{45}
- 24\sqrt{5}
- 9\sqrt{65}
- 3\sqrt{5}
- 20\sqrt{5}
- 18\sqrt{5}
- 2a^{2}-3(b-c)^{2}
- [\sqrt{2}a-\sqrt{3}b+\sqrt{3}c][\sqrt{2}a+\sqrt{3}b-\sqrt{3}c]
- [\sqrt{2}a-\sqrt{3}b+\sqrt{3}c][\sqrt{2}a-\sqrt{3}b+\sqrt{3}c]
- [\sqrt{2}a-\sqrt{3}b.\sqrt{3}c][\sqrt{2}a+\sqrt{3}b.\sqrt{3}c]
- [2a-3b+3c][2a+3b-3c]
- [\sqrt{2}a+\sqrt{3}b+\sqrt{3}c][\sqrt{2}a+\sqrt{3}b+\sqrt{3}c]
- (2\sqrt{5}+5\sqrt{2})(5\sqrt{5}-2\sqrt{2})
- 30-21\sqrt{10}
- 30+21\sqrt{10}
- -30+21\sqrt{10}
- -10
- +10
- x^{3}-36x=0
- -6 and 6
- -3, 0 and 3
- -6, 0 and 6
- 36
- 6
- g(x)=-2x^{2}+5x-1
g(-5)
- log_{25}(\frac{1}{125})=
- \frac{-3}{2}
- \frac{2}{3}
- \frac{3}{2}
- -3
- 2
- If log_{b}(5)=0.81 and log_{b}(3)=0.13 find log_{b}(15)
- 0.1053
- 0.94
- 0.10
- 0.9
- 0.95
- If log_{5}N=2, find N
- \frac{5}{2}
- 10
- \frac{2}{5}
- log_{2}5
- 25
Monday, June 27, 2011
CLEP College Algebra Practice Questions - 4
- (3x-5)^{2}=
- 9x^{2}-30x-25
- 9x^{2}+30x+25
- 39x-25
- 9x^{2}-25
- 9x^{2}-30x+25
- 5^{x+1}=25^{3x+1}, then x=
- \frac{1}{5}
- 5
- -\frac{1}{5}
- 0
- \frac{1}{3}
- log_{3}(x+5)=3
- 10
- 22
- 27
- 30
- 32
- f(x)=7-3x^{3}
- \sqrt[3]{\frac{7-x}{3}}
- \frac{\sqrt[3]{7-x}}{3}
- \sqrt[3]{\frac{x-7}{3}}
- \frac{1}{7-3x^{3}}
- 7x^{3}+3
- f(x)=3x+1 and g(x)=5x-1
- 15x+2
- 15x
- 15x^{2}+x+2
- 15x+4
- 15x-2
- Which quadrants of the xy-plane contain points of the graph of 3x-y>1
- I, II and III only
- I, II and IV only
- I, III and IV only
- II III and IV only
- I, II, III and III only
- (\sqrt{3}i)^{4}=
- 9
- -9
- 9i
- -9i
- -\sqrt{3}
- What are all real values of x for which \frac{2}{5-x}=\frac{1}{5}-\frac{1}{x}
- x=-5 only
- x=5 only
- x=-5
- x=-5 and x=0
- x=-5 and x=-5
- When \frac{5+6i}{1+i} is expressed in the form a+bi, what is the value of a.
- If x, 2x+1 and 7x+5 are the first three terms of an arithmetic progression, then x=
- -\frac{3}{4}
- -3
- 0
- \frac{7}{5}
- \frac{1}{5}
Sunday, June 26, 2011
CLEP College Algebra Practice Questions - 3
- The reduced form of \sqrt{162x^{11}y^{17}} is:
- 18x^{5}y^{8}\sqrt{2xy}
- 9x^{5}y^{8}\sqrt{2}
- 3x^{5}y^{8}\sqrt{2xy}
- 9x^{4}y^{4}\sqrt{2xy}
- 9x^{5}y^{8}\sqrt{2xy}
- \frac{2\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}} is equal to:
- -2
- 1
- \frac{2x-y}{x-y}
- \frac{2x-\sqrt{xy}+y}{x-y}
- \frac{2x-3\sqrt{xy}+y}{x-y}
- Solve the equation: 2x^{6}+52x^{3}-54=0
- -27, 1
- +3 , -1
- -3
- 1 , 27
- -3
- The reduced form of \frac{\frac{1}{x+y}-\frac{1}{y}}{x} is
- 0
- 1
- \frac{1}{xy+y^{2}}
- -\frac{1}{xy+y^{2}}
- xy+y^{2}
- Solve the equation: \frac{1}{x-2}+\frac{1}{x+2}=\frac{1}{x^{2}-4}
- -\frac{1}{2}
- \frac{1}{2}
- \frac{1}{4}
- 2
- 1
- Which factors 5x^{3}-3x^{2}-20x+12 completely?
- (5x+3)(x+2)^{2}
- (5x-3)(x+4)(x-1)
- (5x+3)(x^{2}-4)
- (5x^{2}+3)(x-4)
- (5x-3)(x^{2}+4)
- Reduced (\frac{7a^{-5}}{5c^{\frac{1}{2}}})^{-1}
- \sqrt{\frac{7a^{5}}{5c}}
- \frac{-14a^{5}}{5c}
- \frac{7a^{5}\sqrt{c}}{5}
- \frac{5a^{5}}{7\sqrt{c}}
- \frac{5}{7}a^{5}\sqrt{c}
Saturday, June 25, 2011
CLEP College Algebra Practice Questions - 2
- Determine the range of the following function : f(x)=-x^{4}+5
- y \geq 5
- y \geq -5
- y \geq 4
- y \leq -4
- y \leq 5
- Solve the equation : 3(6x+2)=2x
- x=- \frac{3}{8}
- x=\frac{3}{8}
- x=\frac{8}{3}
- x=-\frac{8}{3}
- x=-3
- What is the multiplicative inverse of -7?
- \frac{1}{7}
- -\frac{1}{7}
- 0
- 7
- -7
- Simplify : \sqrt{169}.\sqrt{81}.\sqrt{196}
- 13689
- 21294
- 1638
- 1764
- 12356
- Factor: b^{2}-121
- (b-11)(b+11)
- (b^{2}-11)(b^{2}+11)
- (b^{2}+11)(b^{2}+11)
- (b-11)(b-11)
- (b+11)(b+11)
- Solve: 1+\frac{1}{x}=\frac{12}{x^{2}}
- x=-4 or x=3
- x= 4 or x=-3
- x=-4 or x=-4
- x=-3 or x=3
- x= 6 or x=-2
- Factor the following equation: a^{2}-2a-35
- (a-7)(a+5)
- (a+7)(a+5)
- (a-5)(a-7)
- (a-1)(a+35)
- (a-35)(a+1)
- Solve the following inequality: 9(6-2x) \leq -12
- x\geq 11
- x \leq \frac{11}{3}
- x \geq \frac{11}{3}
- x\geq 3
- x \leq -11
- Determine the x-intercepts of the following parabola: y=3x^{2}+x-14
- (2,0) and (-\frac{7}{3},0)
- (2,0) and (-3,0)
- (-\frac{3}{7},0) and (-4,0)
- (0,2) and (0,-\frac{7}{3})
- (0,-\frac{7}{3}) and (2,0)
- A Graph of x^{2} + y^{2} = 9 is a
- Parabola
- Hyperbola
- Circle
- Line
- ellipse
Friday, June 24, 2011
CLEP College Mathematics Practice Questions - 1
- Simplify the following expression : 8x+3-3x-7
- 5x-4
- 5x+4
- 11x-4
- 10x-4
- -5x-4
- Determine the mean of the numbers : 20, 34, 36, 52, 60.
- 35
- 40.1
- 40.4
- 40.6
- 50
- What is the rule of f+g if f(x)=10x+7 and g(x)=3x
- 30x+7
- 30x+21
- 7x+7
- 10x-7
- 13x+7
- What percent of 30 is 13
- 43.33
- 43
- 80
- 72.3
- 35
- Find the inverse of the function f(x)=-\frac{9}{5}x+1
- b=-\frac{9}{5}a+5
- a=\frac{9}{5}b-1
- b=-\frac{9}{5}(a-1)
- b=-\frac{9}{5}a-\frac{9}{5}
- a=-\frac{9}{5}b-1
- What is the name give to two angles that add up to 180
- Complemtary
- Adjacent
- straight
- right
- supplementary
- Determine the mode of the following numbers : 6,7,7,5,5,5,9
- 5
- 5.5
- 6.29
- 7
- 7.5
- Which of the following expressions is the same as \frac{a^{-7}b^{2}}{a^{-3}}
- \frac{a^{-4}}{b^{2}}
- \frac{b^{2}}{a^{4}}
- \frac{b^{2}}{a^{-4}}
- b^{2}a^{-4}
- a^{4}b^{2}
- Determine the range of the following set : 5.6, 10.2, 7.3, 9.9, 8.1, 9.7
- 2.9
- 4.3
- 10.2
- 2.1
- 4.6
- If f(x)=x^{5} and g(x)=x^{2}-1, what is the domain restriction on f.g
- x \leq 11
- x \neq 1
- x \geq 1
- There is no restriction
- x\leq 5
Thursday, June 23, 2011
GMAT Besic Equations
- 3(x-2)+6=2x
- \frac{1}{3}x-1=\frac{5}{6}+\frac{7}{2}
- \frac{7x-3}{7}=x+2
- 0.16x+1.1=0.2x+0.96
SAT Practice Questions - 1
- 2(5x-5)+5(2x+2)=
- 0
- 20x
- 20x-10
- 20x+10
- 10x^{2}+20+x+20
- If x=a+2, and y=-8-a then x+y=
- 6
- 10
- 2a-6
- -10
- -6
- If x \ne -5, then \frac{x^{2}+3x-10}{x+5}-(x-2)=
- If (a-\frac{1}{a})^{2}=8, then a^{2}+\frac{1}{a^{2}}=
- 8
- 6
- 10
- 12
- 100
- (x+y)^{2}=16, and x^{2}+y^{2}=6 then xy=
- 5
- 10
- 6
- 4
- 16
- (x+y)=6, and x^{2}-y^{2}=2 then x-y=
- 12
- 4
- 6
- \frac{1}{3}
- 3
- \frac{15y+3}{3}-5y=
- 1
- 0
- 10y+1
- 3
- 3y+1
- if b^{2}-a^{2}=9 then 5(a-b)(a+b)=
- 45
- \frac{9}{5}
- 4
- 50
- -45
- When c \ne 3, then \frac{c^{2}-9}{c-3}=
- c-3
- 1
- c+3
- 3-c
- o
- If b>0, and b^{2}-1=10 \times 12, then b=
- 9
- 1
- 12
- 10
- 11
Answer Key 1 B 2 E 3 0 4 C 5 A 6 D 7 A 8 E 9 C 10 E
CLEP College Algebra Practice Questions - 1
- (3x-1)^{2}
- 3x^{2}+1
- 9x^{2}-1
- 9x^{2}+1
- 9x^{2}-6x+1
- 9x^{2}-3x+1
- Which of the following is a factor of 9-(x+y)^{2}
- (x+y)^{2}
- (x+y)
- 3-x+y
- 3+x+y
- 9+x+y
- 3t(2t^{2}+1)-(4-2t^{3}+10t)+1
- 8t^{2}+7t-3
- 8t^{2}+7t+1
- 8t^{2}-7t-3
- 8t^{2}-7t-4
- 2t^{3}-7t+4
- If x+3=y What is the value of |y-x|+|x-y|
- -6
- 0
- 3
- 6
- -3
- \frac{\frac{x^{2}-4}{x+1}}{\frac{x-2}{x-1}}
- \frac{x-1}{x+2}
- \frac{(x-1)(x+2)}{x+1}
- \frac{x^{2}-x-2}{x+1}
- \frac{1}{(x-1)(x+1)}
- \frac{x+2}{(x-1)(x+1)}
- Which of the following is a factor of 2x^{2}+4x-9
- x+\frac{2-\sqrt{22}}{2}
- x-2-\frac{\sqrt{22}}{2}
- x+2-\frac{\sqrt{22}}{2}
- x-\frac{2+\sqrt{22}}{2}
- x+2+\frac{\sqrt{22}}{2}
- \frac{(n+2)!}{n+1}-n=
- 0
- 2
- n+2
- (n+1)!
- n+1
- Of the following which is greatest?
- 3^{(5^{7})}
- (3^{5})^{7}
- 5^{(3^{7})}
- (5^{3})^{7}
- 7^{(5^{3})}
- Which of the following gives all values of x for wich |x-3| \leq 7?
- \{x/ -10 \leq x \leq 4 \}
- \{x/ -7 \leq x \leq 3 \}
- \{x/ -10 \leq x \leq -3 \}
- \{x/ -10 \leq x \leq -4 \}
- \{x/ -4 \leq x \leq -3 \}
- Which of the following are the solutions of the equation x^{2}-x-1=0 ?
- \frac{-1+\sqrt{5}}{2} or \frac{-1-\sqrt{5}}{2}
- -1+\frac{\sqrt{5}}{2} or -1-\frac{\sqrt{5}}{2}
- \frac{1+\sqrt{5}}{2} or \frac{1-\sqrt{5}}{2}
- 1+\frac{\sqrt{5}}{2} or 1-\frac{\sqrt{5}}{2}
- \frac{1+i\sqrt{5}}{2} or \frac{1-i\sqrt{5}}{2}
1 | D |
2 | D |
3 | C |
4 | D |
5 | B |
6 | D |
7 | B |
8 | A |
9 | C |
10 | C |
Subscribe to:
Posts (Atom)