- If n \ne 0 , (2)^{5n}(8)^{7n}(32)^{3n}
- (32)^{15n}
- (8)^{15n}
- (2)^{5n}
- (2)^{41n}
- (2)^{21n}
- \sqrt{32}+5\sqrt{50}-5\sqrt{2}
- 24\sqrt{2}
- 24\sqrt{8}
- 20\sqrt{2}
- 4\sqrt{2}
- 24\sqrt{32}
- \sqrt{1125}+7\sqrt{180}-5\sqrt{5}
- 5\sqrt{5}
- -5\sqrt{5}
- 62\sqrt{5}
- 62\sqrt{15}
- 62\sqrt{3}
- \sqrt[3]{\frac{-54}{-2}}
- 3
- -3
- 8
- -\sqrt{3}
- \sqrt{3}
- \sqrt{3} \div \sqrt[5]{3}
- 3^{5}
- \sqrt{3}
- \sqrt[10]{3}
- \sqrt[5]{3}
- \sqrt[10]{27}
- Simplify \frac{4a^{0}}{(4a)^{0}}
- Simplify \frac{6x^{5}+12x^{4}}{3x^{3}}
- 2x^{2}+x
- 2x^{2}+4
- 2x(x+2)
- 2x+4
- 2x^{2}-4x
- Simplify \frac{x^{2}-3x}{x^{2}-9}+\frac{3}{x+3}
- x^{2}-4x+4
- x-4
- x+4
- 1
- \frac{1}{4}
- Simplify \frac{\sqrt[3]{x}}{\sqrt[6]{x}}
- \sqrt{x^{6}}
- \sqrt[3]{x}
- \sqrt[6]{x}
- x^{3}
- x^{6}
- Simplify \frac{x^{4}-y^{4}}{x^{2}+y^{2}}
- x^{2}+y^{2}
- x^{2}-y^{2}
- x^{2}y^{2}
- 0
- 2\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
Answer Key 1 D 2 A 3 C 4 A 5 E 6 4 7 C 8 D 9 C 10 B
This site prepare students for math exams, SAT, GRE, GMAT,CLEP practice test, CLEP college Algebra,CLEP precalculus,CLEP Mathematics
Thursday, June 30, 2011
CLEP College Algebra Practice Questions -- (Algebraic operations)
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment