- (3x-5)^{2}=
- 9x^{2}-30x-25
- 9x^{2}+30x+25
- 39x-25
- 9x^{2}-25
- 9x^{2}-30x+25
- 5^{x+1}=25^{3x+1}, then x=
- \frac{1}{5}
- 5
- -\frac{1}{5}
- 0
- \frac{1}{3}
- log_{3}(x+5)=3
- 10
- 22
- 27
- 30
- 32
- f(x)=7-3x^{3}
- \sqrt[3]{\frac{7-x}{3}}
- \frac{\sqrt[3]{7-x}}{3}
- \sqrt[3]{\frac{x-7}{3}}
- \frac{1}{7-3x^{3}}
- 7x^{3}+3
- f(x)=3x+1 and g(x)=5x-1
- 15x+2
- 15x
- 15x^{2}+x+2
- 15x+4
- 15x-2
- Which quadrants of the xy-plane contain points of the graph of 3x-y>1
- I, II and III only
- I, II and IV only
- I, III and IV only
- II III and IV only
- I, II, III and III only
- (\sqrt{3}i)^{4}=
- 9
- -9
- 9i
- -9i
- -\sqrt{3}
- What are all real values of x for which \frac{2}{5-x}=\frac{1}{5}-\frac{1}{x}
- x=-5 only
- x=5 only
- x=-5
- x=-5 and x=0
- x=-5 and x=-5
- When \frac{5+6i}{1+i} is expressed in the form a+bi, what is the value of a.
- If x, 2x+1 and 7x+5 are the first three terms of an arithmetic progression, then x=
- -\frac{3}{4}
- -3
- 0
- \frac{7}{5}
- \frac{1}{5}
This site prepare students for math exams, SAT, GRE, GMAT,CLEP practice test, CLEP college Algebra,CLEP precalculus,CLEP Mathematics
Monday, June 27, 2011
CLEP College Algebra Practice Questions - 4
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment