This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
math exams: CLEP College Algebra Practice Questions -- Functions and their properties
CLEP College Algebra Practice Questions -- Functions and their properties
- If $f(x)=-x^{3}+2x+1$ what is $f(-3x)$
- $27x^{3}-6x+1$
- $-27x^{3}-6x+1 $
- $-27x^{3}+6x+1 $
- $27x^{3}-6x-1 $
- $-3x^{3}-6x+1 $
- If $f(x)=9x+3$ then $f^{-1}(x)=$
- $\frac{1}{9}x-\frac{1}{3}$
- $\frac{1}{3}+\frac{1}{9} $
- $9x-3 $
- $\frac{1}{3}x+1 $
- $x-\frac{1}{9} $
- If $f(x,y)=\frac{x \log x}{y \log y}$ then $f(8,2)=$
- $4$
- $24 $
- $ \frac{3}{2}$
- $\log 2 $
- $12 $
- $\log_{5}(\frac{1}{125})$
- $\frac{1}{3}$
- $-\frac{1}{3} $
- $5 $
- $3 $
- $-3 $
- The function $f$ is defined by $f(x)=\frac{1}{1-x}$. For what values of $x$ is $f(f(x))$ undefined?
- $\{0\}$
- $\{1\} $
- $\{-1,2\} $
- $\{0,1\} $
- $\{-1,0\} $
- If $f(x)=\frac{7x-5}{2}$, find the solution set for $f(x)>3x$
- $\{x/ x>5 \}$
- $\{x/ x<5 \} $
- $\{ x/ x>3 \} $
- $\{ x/ x \leq -3 \} $
- None of the above
- If $f(x)=3x+7$ and $g(x)=2x-1$, what is $f(g(1))$?
- Find the equation for the line passing through $(4,2)$ and $(-1,3)$
- $5y-x=14$
- $5y+x=-14$
- $-5y+x=14$
- $y+5x=14$
- $5y+x=14$
- Solve $2^{7x}=4^{2x-1}$
- $\frac{2}{3}$
- $\frac{3}{2}$
- $-\frac{2}{3}$
- $3$
- $\frac{2}{3}$
- Find $\log_{3} 81$
Answer Key
1 | A |
2 | A |
3 | E |
4 | E |
5 | D |
6 | A |
7 | 10 |
8 | E |
9 | C |
10 | 4 |
No comments:
Post a Comment