Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. math exams: CLEP College Algebra Practice Questions -- Functions and their properties

Friday, July 1, 2011

CLEP College Algebra Practice Questions -- Functions and their properties

  1. If $f(x)=-x^{3}+2x+1$ what is $f(-3x)$

    1. $27x^{3}-6x+1$
    2. $-27x^{3}-6x+1 $
    3. $-27x^{3}+6x+1 $
    4. $27x^{3}-6x-1 $
    5. $-3x^{3}-6x+1 $

  2. If $f(x)=9x+3$ then $f^{-1}(x)=$

    1. $\frac{1}{9}x-\frac{1}{3}$
    2. $\frac{1}{3}+\frac{1}{9} $
    3. $9x-3 $
    4. $\frac{1}{3}x+1 $
    5. $x-\frac{1}{9} $

  3. If $f(x,y)=\frac{x \log x}{y \log y}$ then $f(8,2)=$

    1. $4$
    2. $24 $
    3. $ \frac{3}{2}$
    4. $\log 2 $
    5. $12 $

  4. $\log_{5}(\frac{1}{125})$

    1. $\frac{1}{3}$
    2. $-\frac{1}{3} $
    3. $5 $
    4. $3 $
    5. $-3 $

  5. The function $f$ is defined by $f(x)=\frac{1}{1-x}$. For what values of $x$ is $f(f(x))$ undefined?

    1. $\{0\}$
    2. $\{1\} $
    3. $\{-1,2\} $
    4. $\{0,1\} $
    5. $\{-1,0\} $



  6. If $f(x)=\frac{7x-5}{2}$, find the solution set for $f(x)>3x$

    1. $\{x/ x>5 \}$
    2. $\{x/ x<5 \} $
    3. $\{ x/ x>3 \} $
    4. $\{ x/ x \leq -3 \} $
    5. None of the above

  7. If $f(x)=3x+7$ and $g(x)=2x-1$, what is $f(g(1))$?


  8. Find the equation for the line passing through $(4,2)$ and $(-1,3)$

    1. $5y-x=14$
    2. $5y+x=-14$
    3. $-5y+x=14$
    4. $y+5x=14$
    5. $5y+x=14$

  9. Solve $2^{7x}=4^{2x-1}$

    1. $\frac{2}{3}$
    2. $\frac{3}{2}$
    3. $-\frac{2}{3}$
    4. $3$
    5. $\frac{2}{3}$

  10. Find $\log_{3} 81$
Answer Key
1 A
2 A
3 E
4 E
5 D
6 A
7 10
8 E
9 C
10 4

No comments:

Post a Comment