This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
math exams: CLEP Precalculus Practice Questions -1
CLEP Precalculus Practice Questions -1
- Evaluate the expression: $1000(2^{-1.5})$
- $2828,427$
- $2000.00$
- $353.55$
- $3000$
- $350.50$
- Evaluate the expression: $\log_{49}7$
- $\frac{1}{4}$
- $\frac{1}{2}$
- $\frac{2}{5}$
- $\frac{1}{49}$
- $7$
- Place into standard form: $(5+i)-(7-7i)$
- $-2+8i$
- $2+8i$
- $12+8i$
- $-2+6i$
- $2-8i$
- Find the domaine of the function: $f(x)=\sqrt{-6x+12}$
- $x \geq 2$
- $x \geq 3$
- $x \leq -2$
- $x \leq -1$
- $x \leq 2$
- What is the value of: $3\ln e^{6}$
- $6$
- $18$
- $9$
- $12$
- $3$
- What is the value of: $\csc (150 deg)$
- $0$
- $1$
- $-1$
- $-2$
- $2$
- Solve the equation: $x^{2}-10x+50=0$
- $5+5i$ or $5-5i$
- $2+5i$ or $2-5i$
- $4+5i$ or $4-5i$
- $1+5i$ or $1-5i$
- $5+i$ or $5-i$
- What is the value of $x$: $\log_{10}x=-3$
- $0.01$
- $0.001$
- $0.1$
- $1$
- $10$
- Factor the expression: $x^{2}-3ix-2$
- $(x+i)(x+2i)$
- $(x+i)(x-2i)$
- $(x-i)(x-2i)$
- $(-x-i)(x-2i)$
- $(x-1)(x-2)$
- Identify the horizontal and vertical asymptotes for: $\frac{5x^{2}}{x^{2}-9}$
- $y=5$, $x=-3$, $x=3$
- $y=-5$, $x=-3$
- $y=5$, $x=3$
- $y=5$, $x=-3$
- $y=-5$, $x=3$, $x=-3$
Answer Key
1 | C |
2 | B |
3 | A |
4 | E |
5 | B |
6 | E |
7 | A |
8 | B |
9 | C |
10 | A |
The real test is harder than this I think
ReplyDelete