- If x \ne 3, then \frac{3x^{2}+18x+27}{(x+3)^{2}}
- 1
- 3
- 9
- 27
- 81
- If \frac{x+5}{x-5}=y, what is the value of x in terms of y?
- -5-y
- \frac{5}{y}
- \sqrt{y^{2}+5}
- \frac{-5y-5}{1-y}
- \frac{-5y+5}{1-y}
- \frac{1-\frac{1}{3}}{2}
- 3
- \frac{2}{3}
- \frac{3}{2}
- \frac{1}{3}
- \frac{1}{5}
- \frac{\frac{1}{x}}{\frac{1}{y}-z}
- \frac{xy}{y-xyz}
- \frac{1}{xy-xyz}
- \frac{y}{xyz+x}
- \frac{y}{x-xyz}
- \frac{x-xyz}{y}
- The average of x, \frac{1}{x} and \frac{1}{x^{2}} is
- \frac{1+x^{2}}{3x}
- \frac{1+x^{2}+x^{3}}{3x^{2}}
- \frac{1+x+x^{2}}{3x^{2}}
- \frac{1-x+x^{2}}{3x}
- \frac{1+x^{2}+x^{3}}{3}
- \frac{1}{5} of .01 percent equals :
- .00002
- .0002
- .002
- .02
- .2
- \frac{2^{a+1}-2^{a-1}}{2^{a+1}+2^{a-1}}
- \frac{1}{4}
- \frac{3}{5}
- 2
- \frac{1}{2}
- \frac{5}{3}
- If x is \frac{50}{51} of \frac{51}{52} and y=\frac{50}{51}, then \frac{x}{y}=
- \frac{50}{51}
- \frac{50}{52}
- \frac{51}{52}
- \frac{2550}{2500}
- \frac{2601}{2704}
- The decimal .01 is how many times greater than the decimal (.0001)^{4}
- 10^{6}
- 10^{8}
- 10^{10}
- 10^{12}
- 10^{14}
- Let a=.79, b=\sqrt{.79} and c=(.79)^{2}, then which of the following is true?
- a < b < c
- c < b < a
- a < b < c
- c < a < b
- b < a < c
Answer Key 1 B 2 D 3 D 4 D 5 C 6 A 7 B 8 C 9 E 10 D
This site prepare students for math exams, SAT, GRE, GMAT,CLEP practice test, CLEP college Algebra,CLEP precalculus,CLEP Mathematics
Monday, July 25, 2011
GMAT Practice Questions -5
Subscribe to:
Post Comments (Atom)
GMAT Coaching in Gurgaon
ReplyDeleteGRE Coaching in Gurgaon