- If $x \ne 3$, then $\frac{3x^{2}+18x+27}{(x+3)^{2}}$
- $1$
- $3 $
- $ 9$
- $ 27$
- $81 $
- If $\frac{x+5}{x-5}=y$, what is the value of $x$ in terms of $y$?
- $-5-y$
- $\frac{5}{y} $
- $\sqrt{y^{2}+5} $
- $\frac{-5y-5}{1-y} $
- $\frac{-5y+5}{1-y} $
- $\frac{1-\frac{1}{3}}{2}$
- $3$
- $\frac{2}{3} $
- $\frac{3}{2} $
- $\frac{1}{3} $
- $\frac{1}{5} $
- $\frac{\frac{1}{x}}{\frac{1}{y}-z}$
- $\frac{xy}{y-xyz}$
- $\frac{1}{xy-xyz} $
- $\frac{y}{xyz+x} $
- $\frac{y}{x-xyz} $
- $\frac{x-xyz}{y} $
- The average of $x$, $\frac{1}{x}$ and $\frac{1}{x^{2}}$ is
- $\frac{1+x^{2}}{3x}$
- $\frac{1+x^{2}+x^{3}}{3x^{2}} $
- $ \frac{1+x+x^{2}}{3x^{2}}$
- $\frac{1-x+x^{2}}{3x} $
- $\frac{1+x^{2}+x^{3}}{3} $
- $\frac{1}{5}$ of $.01$ percent equals :
- $.00002$
- $.0002 $
- $.002 $
- $.02 $
- $.2 $
- $\frac{2^{a+1}-2^{a-1}}{2^{a+1}+2^{a-1}}$
- $\frac{1}{4}$
- $\frac{3}{5} $
- $2 $
- $\frac{1}{2} $
- $\frac{5}{3} $
- If $x$ is $\frac{50}{51}$ of $\frac{51}{52}$ and $y=\frac{50}{51}$, then $\frac{x}{y}=$
- $\frac{50}{51}$
- $\frac{50}{52} $
- $\frac{51}{52} $
- $\frac{2550}{2500}$
- $\frac{2601}{2704}$
- The decimal $.01$ is how many times greater than the decimal $(.0001)^{4}$
- $10^{6}$
- $10^{8} $
- $10^{10} $
- $10^{12} $
- $10^{14} $
- Let $a=.79$, $b=\sqrt{.79}$ and $c=(.79)^{2}$, then which of the following is true?
- $a < b < c$
- $c < b < a$
- $a < b < c$
- $c < a < b$
- $b < a < c$
Answer Key 1 B 2 D 3 D 4 D 5 C 6 A 7 B 8 C 9 E 10 D
This site prepare students for math exams, SAT, GRE, GMAT,CLEP practice test, CLEP college Algebra,CLEP precalculus,CLEP Mathematics
Monday, July 25, 2011
GMAT Practice Questions -5
Subscribe to:
Post Comments (Atom)
GMAT Coaching in Gurgaon
ReplyDeleteGRE Coaching in Gurgaon