Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. math exams: GMAT Practice Questions -2

Sunday, July 17, 2011

GMAT Practice Questions -2

  1. If n is an integer, which of the following CANNOT be an integer?

    1. $\frac{n+2}{2}$
    2. $\sqrt{n+1} $
    3. $\frac{3}{n+2} $
    4. $\sqrt{n^{2}+5} $
    5. $\sqrt{\frac{1}{n^{2}+3}} $

  2. If n is an integer, which one of the following is an odd integer?

    1. $n^{2}$
    2. $\frac{n+3}{2} $
    3. $-2n-8 $
    4. $n^{2}-3 $
    5. $\sqrt{n^{4}+1} $

  3. If $x$, $y$, $z$ and $t$ are positive integers such that $x < y < z < t$ and $x+y+z+t=10$, then what is the value of $t$?


    1. $2$

    2. $3$

    3. $4$

    4. $5$

    5. $6$

  4. The remainder when the positive integer $m$ is divided by $n$ is r. What is the remainder when $3m$ is divided by $3n$?

    1. $r$
    2. $3r$
    3. $3n$
    4. $m-3n$
    5. $3(m-nr)$

  5. If $(x-5)(x+4)=(x-4)(x+5)$, then $x=$

    1. $-5$
    2. $ -4$
    3. $0 $
    4. $4 $
    5. $5 $

  6. If $(3x-1)^{2}=121$, then which one of the following COULD equal x?

    1. $-4$
    2. $\frac{10}{3}$
    3. $\frac{13}{3} $
    4. $-\frac{10}{3} $
    5. $\frac{17}{3} $

  7. (The average of 5 consecutive integers starting from 17)-(The average of 6 consecutive integers starting from 17)=

    1. $-\frac{1}{8}$
    2. $-\frac{1}{2}$
    3. $0$
    4. $\frac{1}{8}$
    5. $\frac{1}{2}$

  8. If $n^{3}+n^{2}-n-2=-1$, then which one of the following could be the value of $n$

    1. $0$
    2. $1 $
    3. $2 $
    4. $3 $
    5. $4 $

  9. Solve the the system of equations given?
    $x+3y=8$
    $x+2y=5$

    1. $-1,4$
    2. $1,3$
    3. $2,3$
    4. $1,-3$
    5. $-1,3$

  10. If $(a-b)(a+b)=7 \times 3$ then $a$ and $b$ equals respectively?

    1. $-5,-2$
    2. $5,3 $
    3. $7,2 $
    4. $9,2 $
    5. $-3,-10 $

1 comment: