- If n is an integer, which of the following CANNOT be an integer?
- $\frac{n+2}{2}$
- $\sqrt{n+1} $
- $\frac{3}{n+2} $
- $\sqrt{n^{2}+5} $
- $\sqrt{\frac{1}{n^{2}+3}} $
- If n is an integer, which one of the following is an odd integer?
- $n^{2}$
- $\frac{n+3}{2} $
- $-2n-8 $
- $n^{2}-3 $
- $\sqrt{n^{4}+1} $
- If $x$, $y$, $z$ and $t$ are positive integers such that $x < y < z < t$ and $x+y+z+t=10$, then what is the value of $t$?
- $2$
- $3$
- $4$
- $5$
- $6$
- The remainder when the positive integer $m$ is divided by $n$ is r. What is the remainder when $3m$ is divided by $3n$?
- $r$
- $3r$
- $3n$
- $m-3n$
- $3(m-nr)$
- If $(x-5)(x+4)=(x-4)(x+5)$, then $x=$
- $-5$
- $ -4$
- $0 $
- $4 $
- $5 $
- If $(3x-1)^{2}=121$, then which one of the following COULD equal x?
- $-4$
- $\frac{10}{3}$
- $\frac{13}{3} $
- $-\frac{10}{3} $
- $\frac{17}{3} $
- (The average of 5 consecutive integers starting from 17)-(The average of 6 consecutive integers starting from 17)=
- $-\frac{1}{8}$
- $-\frac{1}{2}$
- $0$
- $\frac{1}{8}$
- $\frac{1}{2}$
- If $n^{3}+n^{2}-n-2=-1$, then which one of the following could be the value of $n$
- $0$
- $1 $
- $2 $
- $3 $
- $4 $
- Solve the the system of equations given?
$x+3y=8$
$x+2y=5$
- $-1,4$
- $1,3$
- $2,3$
- $1,-3$
- $-1,3$
- If $(a-b)(a+b)=7 \times 3$ then $a$ and $b$ equals respectively?
- $-5,-2$
- $5,3 $
- $7,2 $
- $9,2 $
- $-3,-10 $
This site prepare students for math exams, SAT, GRE, GMAT,CLEP practice test, CLEP college Algebra,CLEP precalculus,CLEP Mathematics
Sunday, July 17, 2011
GMAT Practice Questions -2
Subscribe to:
Post Comments (Atom)
GMAT Coaching in Gurgaon
ReplyDeleteGRE Coaching in Gurgaon