## Wednesday, July 27, 2011

### GRE Practice Questions -3

1. If $m=\frac{\sqrt{5}-3}{\sqrt{2}+1}$, then for which one of the following equals $m-3$

1. $\sqrt{10}-3\sqrt{2}-\sqrt{5}+3$
2. $\sqrt{10}-3\sqrt{2}-\sqrt{5}$
3. $\sqrt{10}-3\sqrt{2}+\sqrt{5}$
4. $\sqrt{10}-3\sqrt{2}-\sqrt{5}-6$
5. $\sqrt{10}+3\sqrt{2}-\sqrt{3}$

2. If $y < 0$ and $x$ is 7 more than the square of $y$, which one of the following expresses $y$ in terms of $x$?

1. $y=-\sqrt{x-7}$
2. $y=\sqrt{x-7}$
3. $y=\sqrt{x+7}$
4. $y=\sqrt{x^{2}-7}$
5. $y=-\sqrt{x^{2}-7}$
3. If $\sqrt[m]{125}=5^{3m}$ and $4^{m} > \frac{1}{2}$, then what is the value of $m$?

1. $-1$
2. $-\frac{1}{5}$
3. $0$
4. $\frac{1}{5}$
5. $1$
4. Column A Column B
$x^{2}(x^{5})^{2}$ $(x^{4})^{3}$

5. Column A Column B
$17^{\frac{1}{x}-\frac{1}{y}}$ $0 < x < y$ $17^{x-y}$

6.  1 A 2 B 3 E 4 C 5 A

## Monday, July 25, 2011

### GMAT Practice Questions -5

1. If $x \ne 3$, then $\frac{3x^{2}+18x+27}{(x+3)^{2}}$

1. $1$
2. $3$
3. $9$
4. $27$
5. $81$

2. If $\frac{x+5}{x-5}=y$, what is the value of $x$ in terms of $y$?

1. $-5-y$
2. $\frac{5}{y}$
3. $\sqrt{y^{2}+5}$
4. $\frac{-5y-5}{1-y}$
5. $\frac{-5y+5}{1-y}$

3. $\frac{1-\frac{1}{3}}{2}$

1. $3$
2. $\frac{2}{3}$
3. $\frac{3}{2}$
4. $\frac{1}{3}$
5. $\frac{1}{5}$

4. $\frac{\frac{1}{x}}{\frac{1}{y}-z}$

1. $\frac{xy}{y-xyz}$
2. $\frac{1}{xy-xyz}$
3. $\frac{y}{xyz+x}$
4. $\frac{y}{x-xyz}$
5. $\frac{x-xyz}{y}$

5. The average of $x$, $\frac{1}{x}$ and $\frac{1}{x^{2}}$ is

1. $\frac{1+x^{2}}{3x}$
2. $\frac{1+x^{2}+x^{3}}{3x^{2}}$
3. $\frac{1+x+x^{2}}{3x^{2}}$
4. $\frac{1-x+x^{2}}{3x}$
5. $\frac{1+x^{2}+x^{3}}{3}$

6. $\frac{1}{5}$ of $.01$ percent equals :

1. $.00002$
2. $.0002$
3. $.002$
4. $.02$
5. $.2$

7. $\frac{2^{a+1}-2^{a-1}}{2^{a+1}+2^{a-1}}$

1. $\frac{1}{4}$
2. $\frac{3}{5}$
3. $2$
4. $\frac{1}{2}$
5. $\frac{5}{3}$

8. If $x$ is $\frac{50}{51}$ of $\frac{51}{52}$ and $y=\frac{50}{51}$, then $\frac{x}{y}=$

1. $\frac{50}{51}$
2. $\frac{50}{52}$
3. $\frac{51}{52}$
4. $\frac{2550}{2500}$
5. $\frac{2601}{2704}$

9. The decimal $.01$ is how many times greater than the decimal $(.0001)^{4}$

1. $10^{6}$
2. $10^{8}$
3. $10^{10}$
4. $10^{12}$
5. $10^{14}$

10. Let $a=.79$, $b=\sqrt{.79}$ and $c=(.79)^{2}$, then which of the following is true?

1. $a < b < c$

2. $c < b < a$

3. $a < b < c$

4. $c < a < b$

5. $b < a < c$

 1 B 2 D 3 D 4 D 5 C 6 A 7 B 8 C 9 E 10 D

## Friday, July 22, 2011

### GMAT Practice Questions -4

1. If $n$ is a positive integer and $(n+3)(n+5)$ is odd, then $(n+4)(n+6)$ must be a multiple of which one of the following?

1. $3$
2. $5$
3. $7$
4. $8$
5. $16$

2. The number of prime numbers divisible par 2 plus the number of prime numbers divisible by 5 is

1. $0$
2. $1$
3. $2$
4. $3$
5. $4$

3. If $13x+17=0$, then $-13|x|$ equals which one of the following?

1. $-\frac{17}{13}$
2. $\frac{17}{13}$
3. $17$
4. $13$
5. $-17$

4. Which one of the following is divisible by both 2 and 3?

1. $1007$
2. $3096$
3. $1616$
4. $2306$
5. $1791$

5. Which one of the following equals the product of exactly two prime numbers?

1. $13.6$
2. $11.9$
3. $17.21$
4. $19.51$
5. $17.23$

6. If $m$, $n$, and $p$ are different prime numbers, then the least common multiple of the the three numbers must equal which one of the following?

1. $mn(p+n)$
2. $m+n+p$
3. $m+np$
4. $m+n-p$
5. $pnm$

7. Each of the positive integer $a$ and $b$ ends with the digit 3. With which one of the following numbers does $a-b$ ends?

1. $0$
2. $1$
3. $2$
4. $3$
5. $4$

8. If $p-10$ is divisible by 4, then which one of the following must be divisible by 4?

1. $p$
2. $p-2$
3. $p-6$
4. $p+3$
5. $p+8$

## Wednesday, July 20, 2011

### GMAT Practice Questions -3

1. If $a+5a$ is 6 less than $b+5b$, then $a-b=$

1. $6$
2. $-1$
3. $-\frac{1}{6}$
4. $\frac{1}{6}$
5. $-6$

2. If $w \ne 0$, $w=5x=\sqrt{5}y$, what is the value of $w-x$ in terms of $y$?

1. $5y$
2. $\frac{\sqrt{5}}{5}y$
3. $\sqrt{5y}$
4. $\frac{5}{4\sqrt{5}}y$
5. $\frac{4\sqrt{5}}{5}y$

3. If $(a-1)(a+5)(a-7)=0$, and $a < 0$, then $a=$

1. $-1$

2. $-7$

3. $-5$

4. $-3$

5. $-2$

4. A aytem of equations is as shown below
$x-l=8$
$x+m=7$
$x-p=6$
$x+q=5$
What is the value of $l+m+p+q$?

1. $-4$
2. $-3$
3. $-2$
4. $-1$
5. $0$

5. If $\frac{a^{2}-25}{20a}=\frac{a-5}{a+5}$, $a=5 \ne 0$, and $a \ne 0$, then $a=$

1. $1$
2. $3$
3. $5$
4. $20$
5. $25$

6. If $a$, $b$, $c$,and $d$ are not equal to 0 or 1, and if $a^{x}=b$, $b^{y}=c$, $c^{z}=d$ and $d^{t}=a$, then $xyzt=$

1. $0$
2. $1$
3. $abc$
4. $abcd$
5. $a^{b^{c^{d}}}$

7. If $(x-3y)(x+3y)=-9$ and $(3x-y)(3x+y)=-1$, then $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}=$

1. $-2$
2. $-1$
3. $0$
4. $1$
5. $2$

8. If $p-q=5$ and $pq=11$, then is the value of $\frac{1}{p^{2}}+\frac{1}{q^{2}}$?

1. $\frac{25}{121}$
2. $-\frac{47}{121}$
3. $\frac{5}{11}$
4. $-\frac{5}{11}$
5. $\frac{47}{121}$

## Sunday, July 17, 2011

### GMAT Practice Questions -2

1. If n is an integer, which of the following CANNOT be an integer?

1. $\frac{n+2}{2}$
2. $\sqrt{n+1}$
3. $\frac{3}{n+2}$
4. $\sqrt{n^{2}+5}$
5. $\sqrt{\frac{1}{n^{2}+3}}$

2. If n is an integer, which one of the following is an odd integer?

1. $n^{2}$
2. $\frac{n+3}{2}$
3. $-2n-8$
4. $n^{2}-3$
5. $\sqrt{n^{4}+1}$

3. If $x$, $y$, $z$ and $t$ are positive integers such that $x < y < z < t$ and $x+y+z+t=10$, then what is the value of $t$?

1. $2$

2. $3$

3. $4$

4. $5$

5. $6$

4. The remainder when the positive integer $m$ is divided by $n$ is r. What is the remainder when $3m$ is divided by $3n$?

1. $r$
2. $3r$
3. $3n$
4. $m-3n$
5. $3(m-nr)$

5. If $(x-5)(x+4)=(x-4)(x+5)$, then $x=$

1. $-5$
2. $-4$
3. $0$
4. $4$
5. $5$

6. If $(3x-1)^{2}=121$, then which one of the following COULD equal x?

1. $-4$
2. $\frac{10}{3}$
3. $\frac{13}{3}$
4. $-\frac{10}{3}$
5. $\frac{17}{3}$

7. (The average of 5 consecutive integers starting from 17)-(The average of 6 consecutive integers starting from 17)=

1. $-\frac{1}{8}$
2. $-\frac{1}{2}$
3. $0$
4. $\frac{1}{8}$
5. $\frac{1}{2}$

8. If $n^{3}+n^{2}-n-2=-1$, then which one of the following could be the value of $n$

1. $0$
2. $1$
3. $2$
4. $3$
5. $4$

9. Solve the the system of equations given?
$x+3y=8$
$x+2y=5$

1. $-1,4$
2. $1,3$
3. $2,3$
4. $1,-3$
5. $-1,3$

10. If $(a-b)(a+b)=7 \times 3$ then $a$ and $b$ equals respectively?

1. $-5,-2$
2. $5,3$
3. $7,2$
4. $9,2$
5. $-3,-10$

## Monday, July 11, 2011

### GRE Practice Questions -2

1. $4x+3=-1$, then $x-1=$

1. $2$
2. $1$
3. $0$
4. $-1$
5. $-2$

2. $\frac{7}{\frac{1}{6}+1}$

1. $-6$
2. $7$
3. $\frac{1}{6}$
4. $\frac{1}{6}$
5. $6$

3. $32^{17}=2^{3a+4}$, then $a=$

1. $3$
2. $9$
3. $27$
4. $81$
5. $243$

4. $a=5b$, $b^{2}=3c$ and $5c=d$, then $\frac{a^{2}}{d}=$

1. $15$
2. $\frac{3}{5}$
3. $\frac{15}{3}$
4. $9$
5. $\frac{1}{5}$

5. $(x-3)(x+2)=(x+4)(x-5)$

1. $7$
2. $14$
3. $-7$
4. $3$
5. There is no solution

6. $\frac{1}{2}$ of $0.02$ percent equals

1. $1$
2. $0.1$
3. $0.01$
4. $0.001$
5. $0.0001$

7. If the average of $2x$, $3x$ and $5x$ is 3, then $x=$

1. $\frac{10}{9}$
2. $9$
3. $10$
4. $\frac{9}{10}$
5. $-\frac{9}{10}$

8. $-2^{5}-(1-x^{2})^{2}$

1. $-x^{4}+2x^{2}+31$
2. $-x^{4}+2x^{2}-31$
3. $-x^{4}+2x^{2}+33$
4. $-x^{4}-2x^{2}+33$
5. $-x^{4}+2x^{2}-33$

9. A truckmaker sells six models of cars, and each model comes with 7 options.
How many different types of trucks does the truckmaker sell?

1. $20$
2. $25$
3. $32$
4. $42$
5. $52$

10. If $a$, $b$, and $c$ are consecutive integers and $a < b < c$, which of the following must be true?

1. $b^{3}$ is a prime number

2. $\frac{a+c}{2}=b$

3. $\frac{c-a}{2}=1$ is odd

4. $\frac{ab}{3}$

5. $c-a=b$

### GMAT Practice Questions -1

1. If $C=\frac{7r}{3s}$ and $s \ne 0$, what is the value of C?

1. $r=6s$
2. $r=\frac{3}{7}$

2. If $7a=5b$ and $ab \ne 0$, what is the ratio of $\frac{a}{5}$ to $\frac{b}{7}$

1. $\frac{49}{25}$
2. $\frac{7}{5}$
3. $\frac{5}{7}$
4. $1$
5. $\frac{25}{49}$

3. If the diameter of a circle is $18$, then the area of the circle is

1. $9 \pi$
2. $18 \pi$
3. $36 \pi$
4. $81 \pi$
5. $324 \pi$

4. For any numbers $a$ and $b$, $a*b=ab(5-b)$. If $a$ and $a*b$ both represent positive numbers, which of the following could be a value of $b$?

1. $-7$
2. $-1$
3. $3$
4. $6$
5. $9$

5. $\sqrt{7^{2}+5^{2}-10}$

1. $4\sqrt{2}$
2. $6$
3. $8$
4. $10$
5. $\sqrt{117}$

6. What is the perimeter of a square with area $\frac{7p}{4}$?

1. $\frac{7p}{4}$
2. $\frac{7p^{2}}{4}$
3. $7p$
4. $7p^{2}$
5. $\frac{4p}{7}$

7. $\sqrt{169}+\sqrt{256}+\sqrt{361}=$

1. $19$
2. $29$
3. $36$
4. $46$
5. $48$

8. If $45$ percent of $500$ is $50$ percent of x, then $x=$

1. $350$
2. $400$
3. $450$
4. $600$
5. $1,200$

9. $(5^{3}-1)(5^{3}+1)(5^{6}+1)(5^{12}+1)$

1. $(5^{24}-1)$
2. $(5^{24}+1)$
3. $(5^{48}-1)$
4. $(5^{96}+1)$
5. $5^{3}(5^{24}-1)$

10. How many minutes does it take to travel $160$ miles at $200$ miles per hour?

1. $13$
2. $16$
3. $45$
4. $48$
5. $52$

## Sunday, July 10, 2011

### GRE Practice Questions -1

1. If $5x+7=11$, then $5x-4=0$

1. $11$
2. $7$
3. $5$
4. $1$
5. $0$

2. The smallest prime number greter than 50 is

1. $51$
2. $52$
3. $53$
4. $54$
5. $55$

3. $\frac{6}{\frac{1}{5}+1}$

1. $1$
2. $\frac{1}{5}$
3. $\frac{1}{6}$
4. $5$
5. $6$

4. $\sqrt{(120-39)(68+13)}$

1. $2$
2. $20$
3. $40$
4. $80$
5. $81$

5. $(9^{y})^{3}$

1. $9^{y+3}$
2. $9^{6y}$
3. $3^{3y^{2}}$
4. $9^{y^{3}}$
5. $3^{6y}$

6. $27^{13}=3^{a}$, then $a=$

1. $39$
2. $29$
3. $19$
4. $13$
5. $9$

7. $x-y=h$, then $5x^{2}-10xy+5y^{2}=$

1. $5h^{2}$
2. $10h$
3. $h^{2}$
4. $5h$
5. $10h^{2}$

8. $27x^{2}-12$

1. $3(3x-2)(3x+2)$
2. $3(9x-2)(9x+2)$
3. $9(3x-2)(3x+2)$
4. $3(3x-2)(9x+2)$
5. $(9x-2)(9x+2)$

9. If the average of $3x$ and $9x$ is 6, then $x=$

1. $20$
2. $19$
3. $9$
4. $3$
5. $1$

10. What percent of $5x$ is $10y$ if $x=2y$?

1. $20 \%$
2. $30 \%$
3. $40 \%$
4. $45 \%$
5. $50 \%$

## Friday, July 8, 2011

### SAT Practice Questions - 7

1. If $3x+7=5x+1$

1. $2.5$
2. $3.5$
3. $4$
4. $3$
5. $4.5$

2. What is the next term in the sequence: 6, 3, 10, 7, 14, 11, ...?

1. $19$
2. $15$
3. $6$
4. $17$
5. $18$

3. The area of the basis of Cylinder A is 8 times the area of the basis of Cylinder B. What is the radius of Cylinder A in terms of the radius of Cylinder B?

1. $r_{A}=\frac{r_{B}}{8}$
2. $r_{A}=8r_{B}$
3. $r_{A}=4r_{B}$
4. $r_{A}=2\sqrt{2}r_{B}$
5. $r_{A}=\frac{r_{B}}{4}$

4. If $x^{2}-2xy+y^{2}=121$, $x-y=$

1. $10$
2. $11$
3. $12$
4. $13$
5. $14$

5. If c is equal to the sum b and twice of a, which of the following is the average of b and c?

1. $a$
2. $b$
3. $c$
4. $a+b$
5. $b+c$

6. $f(x)=4x+8$, $f(c+3)=8$, $f(c)=$

1. $-8$
2. $0$
3. $3$
4. $8$
5. $-3$

7. $5^{n}.125^{m}=78,125$, $n+3m=$

1. $5$
2. $6$
3. $7$
4. $8$
5. $9$

8. $\frac{3b^{2}}{a^{3}}=27a^{2}$

1. $3a^{3}$
2. $9a^{3}$
3. $\frac{1}{9a^{3}}$
4. $\frac{1}{a^{3}}$
5. $\frac{1}{3a^{3}}$

9. Which of the following statements must be true about the x and y coordinates that satisfy the equation $ay-ax=0$, $a \ne 0$, $x \ne 0$ ,$y \ne 0$

1. $x>y$
2. $xy=1$
3. $x=-y$
4. $y>x$
5. $x=y$

10. What is the length of the side of a cube whose volume is 125 cubic units?

1. $4$
2. $5$
3. $6$
4. $7$
5. $4.5$
 1 D 2 E 3 D 4 B 5 D 6 D 7 C 8 E 9 E 10 B

## Wednesday, July 6, 2011

### SAT Practice Questions - 6

1. If $\frac{1}{2}$ of a number is 3, what is $\frac{1}{3}$ of the number?

1. $1$
2. $2$
3. $3$
4. $6$
5. $8$

2. If $x=-1$, then $x^{5}+x^{4}+x^{3}+x^{2}-5=$

1. $-10$
2. $-6$
3. $-5$
4. $-3$
5. $-1$

3. If $f(x)=2^{x}+7x$, then $f(4)=$

1. $24$
2. $36$
3. $44$
4. $54$
5. $64$

4. If $x-3=y$, then $(y-x)^{3}=$

1. $27$
2. $54$
3. $-54$
4. $-27$
5. $81$

5. If $a>b$, and $\frac{a}{b}>0$, which of the following is true?

1. $a>0$
2. $b>0$
3. $ab>0$

1. I only
2. II only
3. III only
4. I and II only
5. I and III only

6. Which of the following is equal to $(\frac{x^{-7}y^{-5}}{x^{-3}y^{3}})^{-2}$

1. $x^{8}y^{16}$
2. $\frac{x^{8}}{y^{16}}$
3. $\frac{y^{16}}{x^{8}}$
4. $x^{4}y^{8}$
5. $x^{8}y^{8}$

7. What is the slope of the line passing through the points (-1,7) and (3,5)?

1. $\frac{1}{2}$
2. $-2$
3. $-\frac{1}{2}$
4. $1$
5. $2$

8. The symbol $\otimes$ represents a binary operation defined as $a \otimes b=3^{a}+2^{b}$, what is the value of $(-2)\otimes (-3)$

1. $-\frac{17}{72}$
2. $\frac{72}{17}$
3. $-72$
4. $72$
5. $\frac{17}{72}$

9. If $\sqrt{\frac{49}{x}}=\frac{7}{3}$

1. $6$
2. $9$
3. $25$
4. $49$
5. $147$

10. A bike that originally sold for $150 \$$was on sale for 120 \$$. What was the rate of discount? 1.$15 \%$2.$21 \%$3.$20 \%$4.$25 \% $5.$30 \% $ 1 B 2 C 3 C 4 D 5 C 6 A 7 C 8 E 9 B 10 C ### SAT Practice Questions - 5 1. If$ 0.10 < x < 0.12$, which of the following could be a value of$x$? 1.$9 \%$2.$10 \% $3.$11 \% $4.$12 \% $5.$13 \% $2. If$\frac{xyz}{t}=w$and$x$and$t$are doubled, what happens to the value of w 1. The value of$w$is two times smaller. 2. The value of$w$is halved. 3. The value of$w$is four times greater. 4. The value of$w$is doubled 5. The value of$w$remains the same. 3. What is the tenth term of the pattern below?$\frac{3}{2}$,$\frac{9}{4}$,$\frac{27}{8}$,$\frac{81}{16}$,... 1.$\frac{3}{2^{10}}$2.$\frac{30}{20}$3.$(\frac{3}{2})^{10}$4.$\frac{3^{10}}{2}$5.$\frac{300}{200}$4. If$a > 0$and$b < 0$, which of the following is always negative? 1.$-ab$2.$a+b$3.$|a|-|b|$4.$\frac{a}{b}$5.$b^{a}$5. Which of the following number pairs is in the ratio$3:7$? 1.$\frac{1}{3}$,$\frac{1}{7}$2.$\frac{1}{7}$,$\frac{1}{3}$3.$\frac{1}{7}$,$\frac{3}{7}$4.$7$,$\frac{1}{3}$5.$1$,$\frac{1}{7}$6. If$x=-\frac{1}{4}$, then$(-x)^{-3}+(\frac{1}{x})^{2}=$1.$-80$2.$-64$3.$16 $4.$64$5.$80$7. For which of the following values of$x$is the relationship$x < x^{2} < x^{3}$true? 1.$-3$2.$-\frac{2}{3}$3.$0$4.$\frac{2}{3} $5.$3$8.$x^{2}+2xy+y^{2}=169$,$-|-(x+y)|=$9. How many distincts factors does 900 have? 1.$2$2.$ 3$3.$ 4$4.$ 5$5. more than$5$10. If$x=-\frac{1}{7}$, then which of the following is always positive for$n > 0$? 1.$x^{n}$2.$n^{x}$3.$nx$4.$n-x$5.$\frac{x}{n} $ 1 C 2 E 3 C 4 D 5 B 6 E 7 3 8 -13 9 A 10 B ## Tuesday, July 5, 2011 ### SAT Practice Questions - 4 1. For how many positive integers,$n$, is true that$n^{2} \leq 3n$1.$2$2.$3$3.$4$4.$5$5. more than 5 2. If$a^{4}=16$, then$3^{a}$1.$3$2.$9$3.$16$4.$27$5.$81$3.$\sqrt{20}\sqrt{5}=$1.$2\sqrt{5}$2.$10$3.$4\sqrt{5}$4.$5\sqrt{10}$5.$10\sqrt{5}$4. The sum of three positive consecutive even integers is x. What is the value of the middle of the three integers? 1.$\frac{x}{3}-1$2.$\frac{x}{3}+2$3.$3x$4.$\frac{x-2}{3}$5.$\frac{x}{3}$5. What is the average of$5^{10}$,$5^{20}$,$5^{30}$,$5^{40}$and$5^{50}$? 1.$5^{9}+5^{19}+5^{29}+5^{39}+5^{49}$2.$5^{30}$3.$5^{149}$4.$150$5.$5^{29}$6. Which of the following is equal to$(5^{6} \times 5^{9})^{10}$? 1.$25^{150}$2.$25^{540}$3.$5^{540}$4.$5^{150}$5.$5^{15}$7. What is the value of$3^{\frac{1}{3}} \times 3^{\frac{2}{3}} \times 3^{\frac{3}{3}}$? 1.$3$2.$9$3.$27$4.$30$5.$81$8. How many integers satisfy the inequality$|x| < 2 \pi$. 1.$0$2.$3$3.$4$4.$7$5. More than$7$9. What is the average of$5^{a} \times 5^{b}=5^{300}$1.$50$2.$100$3.$150$4.$200$5.$250$10. If$5^{a}5^{b}=\frac{5^{c}}{5^{d}}$, what is d in terms of$a$,$b$and$c$? 1.$\frac{c}{a+b}$2.$c+ab$3.$c-a-b$4.$c+a-b$5.$\frac{b}{ac}$ 1 B 2 B 3 B 4 E 5 A 6 D 7 B 8 E 9 C 10 C ### SAT Practice Questions - 3 & Answer Key 1. Which of the following is equivalent to$5^{9}$1.$5^{4}+5^{4}+5^{1}$2.$5^{2} \times 5^{4} \times 5^{3}$3.$\frac{10^{9}}{2^{10}}$4.$(5^{4})^{5}$5.$\frac{5^{5}}{5^{4}}$2. Which of the following is equivalent to$\sqrt{289}$1.$14$2.$15$3.$16$4.$17$5.$18$3. Which of the following is a perfect square? 1.$120$2.$121$3.$122$4.$123$5.$124$4. Which of the following is equivalent to$3\sqrt{10}$1.$3\sqrt{5} \times \sqrt{5}$2.$\sqrt{90}$3.$3\sqrt{5} + 3\sqrt{2}$4.$3\sqrt{5}+3\sqrt{5}$5.$\frac{3\sqrt{2}}{\sqrt{5}}$5. Which of the following is equivalent to$10^{\frac{2}{5}}$1.$\sqrt[5]{5}$2.$\sqrt[5]{10}$3.$\sqrt[5]{20}$4.$\sqrt[5]{100}$5.$\sqrt[5]{1000}$6. Which of the following fractions is equivalent to$\frac{3}{6} \times \frac{2}{5}$? 1.$\frac{6}{30}$2.$\frac{5}{30}$3.$\frac{5}{11}$4.$\frac{15}{12}$5.$\frac{9}{30}$7. Which of the following expressions is equivalent to$\frac{7}{6} \div \frac{5}{2}$? 1.$\frac{7}{30}+\frac{2}{30}$2.$\frac{9}{6}+\frac{9}{5}$3.$\frac{7}{8}+\frac{5}{8}$4.$\frac{7}{6}+\frac{2}{5}$5.$\frac{1}{7}+\frac{2}{35}$8. If$3^{x}=729$, what is$x^{3}$? 9. What is the value of$||4|-|-7||$1.$-11$2.$-3$3.$0$4.$3$5.$11$10. What is the value of$(\sqrt{3}+\sqrt{5})^{2}-(\sqrt{8})^{2}$1.$2\sqrt{15}$2.$\sqrt{15}$3.$0$4.$15$5.$30$ 1 B 2 D 3 B 4 B 5 D 6 A 7 E 8 125 9 D 10 A ## Monday, July 4, 2011 ### SAT Practice Questions - 2 1. Solve$15x-32=18-10x$1.$-14$2.$10$3.$14$4.$2$5.$50$2. Solve$\frac{x}{8}=\frac{x-2}{4}$1.$12$2.$4$3.$6$4.$-\frac{1}{2}$5.$-6$3. Which of the following are the factors of$t^{2}+8t+16$1.$(t-4)(t-4)$2.$(t-8)(t-2)$3.$(t+8)(t+2)$4.$(t+1)(t+16)$5.$(t+4)(t+4)$4. Solve for a in term of b, if$6a+12b=24$1.$24-12b$2.$2-\frac{1}{2}b$3.$4-2b$4.$24-18b$5.$2b-4$5. If$ax+2b=5c-dx$, what does x equal in terms of a, b, c, and d? 1.$5c-d-2b-a$2.$a-d$3.$(5c-2b)(a-d)$4.$\frac{5c-d-2b}{a}$5.$\frac{5c-2b}{a-d}$6. If$(z-9)(z+3)=0$, what are the two possible values of z? 1.$z=-9$abd$z=3$2.$z=9$abd$z=0$3.$z=0$abd$z=-3$4.$z=9$abd$z=-3$5.$z=-12$abd$z=12$7. If$z^{2}-6z=16$, which of the following could be a value of$z^{2}+6z$? 1.$-8$2.$112$3.$110$4.$18$5.$108$8. If$3\sqrt{ a}-10=2$, what is the value of a? 1.$16$2.$4$3.$32$4.$64$5.$12$9. Given$\frac{(x+6)(x^{2}-2x-3)}{x^{2}+3x-18}=10$, find the value of x. 1.$18$2.$4$3.$12$4.$9$5.$12$10. Solve the equation$\frac{5x}{8}-\frac{3x}{5}=2$. 1.$40$2.$80$3.$160$4.$-80$5.$20$ 1 D 2 B 3 E 4 C 5 E 6 D 7 B 8 A 9 D 10 B ## Saturday, July 2, 2011 ### CLEP Precalculus Practice Questions -1 1. Evaluate the expression:$1000(2^{-1.5})$1.$2828,427$2.$2000.00$3.$353.55$4.$3000$5.$350.50$2. Evaluate the expression:$\log_{49}7$1.$\frac{1}{4}$2.$\frac{1}{2}$3.$\frac{2}{5}$4.$\frac{1}{49}$5.$7$3. Place into standard form:$(5+i)-(7-7i)$1.$-2+8i$2.$2+8i$3.$12+8i$4.$-2+6i$5.$2-8i$4. Find the domaine of the function:$f(x)=\sqrt{-6x+12}$1.$x \geq 2$2.$x \geq 3$3.$x \leq -2$4.$x \leq -1$5.$x \leq 2$5. What is the value of:$3\ln e^{6}$1.$6$2.$18$3.$9$4.$12$5.$3$6. What is the value of:$\csc (150 deg)$1.$0$2.$1$3.$-1$4.$-2$5.$2$7. Solve the equation:$x^{2}-10x+50=0$1.$5+5i$or$5-5i$2.$2+5i$or$2-5i$3.$4+5i$or$4-5i$4.$1+5i$or$1-5i$5.$5+i$or$5-i$8. What is the value of$x$:$\log_{10}x=-3$1.$0.01$2.$0.001$3.$0.1$4.$1$5.$10$9. Factor the expression:$x^{2}-3ix-2$1.$(x+i)(x+2i)$2.$(x+i)(x-2i)$3.$(x-i)(x-2i)$4.$(-x-i)(x-2i)$5.$(x-1)(x-2)$10. Identify the horizontal and vertical asymptotes for:$\frac{5x^{2}}{x^{2}-9}$1.$y=5$,$x=-3$,$x=3$2.$y=-5$,$x=-3$3.$y=5$,$x=3$4.$y=5$,$x=-3$5.$y=-5$,$x=3$,$x=-3$11.  1 C 2 B 3 A 4 E 5 B 6 E 7 A 8 B 9 C 10 A ## Friday, July 1, 2011 ### CLEP College Algebra Practice Questions -- Functions and their properties 1. If$f(x)=-x^{3}+2x+1$what is$f(-3x)$1.$27x^{3}-6x+1$2.$-27x^{3}-6x+1 $3.$-27x^{3}+6x+1 $4.$27x^{3}-6x-1 $5.$-3x^{3}-6x+1 $2. If$f(x)=9x+3$then$f^{-1}(x)=$1.$\frac{1}{9}x-\frac{1}{3}$2.$\frac{1}{3}+\frac{1}{9} $3.$9x-3 $4.$\frac{1}{3}x+1 $5.$x-\frac{1}{9} $3. If$f(x,y)=\frac{x \log x}{y \log y}$then$f(8,2)=$1.$4$2.$24 $3.$ \frac{3}{2}$4.$\log 2 $5.$12 $4.$\log_{5}(\frac{1}{125})$1.$\frac{1}{3}$2.$-\frac{1}{3} $3.$5 $4.$3 $5.$-3 $5. The function$f$is defined by$f(x)=\frac{1}{1-x}$. For what values of$x$is$f(f(x))$undefined? 1.$\{0\}$2.$\{1\} $3.$\{-1,2\} $4.$\{0,1\} $5.$\{-1,0\} $6. If$f(x)=\frac{7x-5}{2}$, find the solution set for$f(x)>3x$1.$\{x/ x>5 \}$2.$\{x/ x<5 \} $3.$\{ x/ x>3 \} $4.$\{ x/ x \leq -3 \} $5. None of the above 7. If$f(x)=3x+7$and$g(x)=2x-1$, what is$f(g(1))$? 8. Find the equation for the line passing through$(4,2)$and$(-1,3)$1.$5y-x=14$2.$5y+x=-14$3.$-5y+x=14$4.$y+5x=14$5.$5y+x=14$9. Solve$2^{7x}=4^{2x-1}$1.$\frac{2}{3}$2.$\frac{3}{2}$3.$-\frac{2}{3}$4.$3$5.$\frac{2}{3}$10. Find$\log_{3} 81\$
 1 A 2 A 3 E 4 E 5 D 6 A 7 10 8 E 9 C 10 4