- If $m=\frac{\sqrt{5}-3}{\sqrt{2}+1}$, then for which one of the following equals $m-3$
- $\sqrt{10}-3\sqrt{2}-\sqrt{5}+3$
- $\sqrt{10}-3\sqrt{2}-\sqrt{5}$
- $\sqrt{10}-3\sqrt{2}+\sqrt{5} $
- $\sqrt{10}-3\sqrt{2}-\sqrt{5}-6 $
- $\sqrt{10}+3\sqrt{2}-\sqrt{3} $
- If $y < 0$ and $x$ is 7 more than the square of $y$, which one of the following expresses $y$ in terms of $x$?
- $y=-\sqrt{x-7}$
- $y=\sqrt{x-7} $
- $y=\sqrt{x+7} $
- $y=\sqrt{x^{2}-7}$
- $y=-\sqrt{x^{2}-7}$
- If $\sqrt[m]{125}=5^{3m}$ and $4^{m} > \frac{1}{2}$, then what is the value of $m$?
- $-1$
- $-\frac{1}{5}$
- $0 $
- $\frac{1}{5}$
- $1$
Column A Column B $x^{2}(x^{5})^{2}$ $(x^{4})^{3}$ Column A Column B $17^{\frac{1}{x}-\frac{1}{y}}$ $0 < x < y$ $17^{x-y}$
1 | A |
2 | B |
3 | E |
4 | C |
5 | A |
GMAT Coaching in Gurgaon
ReplyDeleteGRE Coaching in Gurgaon