## Thursday, June 30, 2011

### CLEP College Algebra Practice Questions -- (Algebraic operations)

1. If $n \ne 0$ , $(2)^{5n}(8)^{7n}(32)^{3n}$

1. $(32)^{15n}$
2. $(8)^{15n}$
3. $(2)^{5n}$
4. $(2)^{41n}$
5. $(2)^{21n}$

2. $\sqrt{32}+5\sqrt{50}-5\sqrt{2}$

1. $24\sqrt{2}$
2. $24\sqrt{8}$
3. $20\sqrt{2}$
4. $4\sqrt{2}$
5. $24\sqrt{32}$

3. $\sqrt{1125}+7\sqrt{180}-5\sqrt{5}$

1. $5\sqrt{5}$
2. $-5\sqrt{5}$
3. $62\sqrt{5}$
4. $62\sqrt{15}$
5. $62\sqrt{3}$

4. $\sqrt[3]{\frac{-54}{-2}}$

1. $3$
2. $-3$
3. $8$
4. $-\sqrt{3}$
5. $\sqrt{3}$

5. $\sqrt{3} \div \sqrt[5]{3}$

1. $3^{5}$
2. $\sqrt{3}$
3. $\sqrt[10]{3}$
4. $\sqrt[5]{3}$
5. $\sqrt[10]{27}$

6. Simplify $\frac{4a^{0}}{(4a)^{0}}$

7. Simplify $\frac{6x^{5}+12x^{4}}{3x^{3}}$
1. $2x^{2}+x$
2. $2x^{2}+4$
3. $2x(x+2)$
4. $2x+4$
5. $2x^{2}-4x$

8. Simplify $\frac{x^{2}-3x}{x^{2}-9}+\frac{3}{x+3}$

1. $x^{2}-4x+4$
2. $x-4$
3. $x+4$
4. $1$
5. $\frac{1}{4}$

9. Simplify $\frac{\sqrt[3]{x}}{\sqrt[6]{x}}$

1. $\sqrt{x^{6}}$
2. $\sqrt[3]{x}$
3. $\sqrt[6]{x}$
4. $x^{3}$
5. $x^{6}$

10. Simplify $\frac{x^{4}-y^{4}}{x^{2}+y^{2}}$

1. $x^{2}+y^{2}$
2. $x^{2}-y^{2}$
3. $x^{2}y^{2}$
4. $0$
5. $2\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$

 1 D 2 A 3 C 4 A 5 E 6 4 7 C 8 D 9 C 10 B

## Wednesday, June 29, 2011

### CLEP College Algebra Practice Questions -- (Equations )

1. $\frac{9}{x+5}=\frac{3}{x+1}$

1. $1$
2. $3$
3. $5$
4. $9$
5. $0$

2. $xy+5y=10$ and $x+2=7$, then $y=$

1. $0$
2. $1$
3. $5$
4. $7$
5. $2$

3. $\frac{9x}{5}=(a^{7}-1)^{3}$ and $a=-1$, solve for $x$.

1. $-40$
2. $-\frac{40}{9}$
3. $\frac{40}{9}$
4. $\frac{35}{9}$
5. $0$

4. $\frac{18}{x^{2}+6x+27}=1$

1. $\{-3,3\}$
2. $\{-3\}$
3. $\{3\}$
4. $\{-3,0\}$
5. $\{-3,-3\}$

5. Find the solution of the following equation : $|5x-1|=9$

1. $\{2\}$
2. $\{-\frac{8}{5}\}$
3. $\{-\frac{8}{5},2\}$
4. $\{\frac{9}{5}\}$
5. $\{\frac{1}{5}\}$

6. If $a=(b+5)^{2}$ and $b=-5$, what is $a$?

1. $-5$
2. $5$
3. $0$
4. $1$
5. $2$

7. Solve $x^{2}+2x+11=0$

1. $-1+\sqrt{10}$ or $-1-\sqrt{10}$
2. $1+i\sqrt{10}$ or $-1-i\sqrt{10}$
3. or $-1-i\sqrt{10}$
4. $-1+i\sqrt{10}$ or $-1-i\sqrt{10}$
5. $-1+i\sqrt{10}$

8. If $\frac{a}{b}=5$ then $a^{2}-25b^{2}+7=$

1. $0$
2. $7$
3. $-1$
4. $25$
5. $5$

9. Solve $9x-6 \leq 5x+2$

1. $x \leq 2$
2. $x \geq 2$
3. $x \leq -2$
4. $x \geq -2$
5. $x < 2$

10. Solve $\frac{3}{x}=\frac{2}{x-1}$

1. $-3$
2. $2$
3. $-2$
4. $3$
5. There is no solution
 1 A 2 B 3 B 4 E 5 C 6 C 7 D 8 B 9 A 10 D

## Tuesday, June 28, 2011

### CLEP College Algebra Practice Questions - 5

1. Find the indicated root $\sqrt[3]{-64}$
1. $-4$
2. $-16$
3. $16$
4. $4$
5. Cannot be evaluated

2. $3^{3x}=9^{x-1}$

1. $2$
2. $-2$
3. $\frac{1}{2}$
4. $\frac{1}{3}$
5. $3$

3. $3\sqrt{20}+6\sqrt{45}$

1. $24\sqrt{5}$
2. $9\sqrt{65}$
3. $3\sqrt{5}$
4. $20\sqrt{5}$
5. $18\sqrt{5}$

4. $2a^{2}-3(b-c)^{2}$

1. $[\sqrt{2}a-\sqrt{3}b+\sqrt{3}c][\sqrt{2}a+\sqrt{3}b-\sqrt{3}c]$
2. $[\sqrt{2}a-\sqrt{3}b+\sqrt{3}c][\sqrt{2}a-\sqrt{3}b+\sqrt{3}c]$
3. $[\sqrt{2}a-\sqrt{3}b.\sqrt{3}c][\sqrt{2}a+\sqrt{3}b.\sqrt{3}c]$
4. $[2a-3b+3c][2a+3b-3c]$
5. $[\sqrt{2}a+\sqrt{3}b+\sqrt{3}c][\sqrt{2}a+\sqrt{3}b+\sqrt{3}c]$

5. $(2\sqrt{5}+5\sqrt{2})(5\sqrt{5}-2\sqrt{2})$

1. $30-21\sqrt{10}$
2. $30+21\sqrt{10}$
3. $-30+21\sqrt{10}$
4. $-10$
5. $+10$

6. $x^{3}-36x=0$

1. $-6$ and $6$
2. $-3$, $0$ and $3$
3. $-6$, $0$ and $6$
4. $36$
5. $6$

7. $g(x)=-2x^{2}+5x-1$

$g(-5)$

8. $log_{25}(\frac{1}{125})=$

1. $\frac{-3}{2}$
2. $\frac{2}{3}$
3. $\frac{3}{2}$
4. $-3$
5. $2$

9. If $log_{b}(5)=0.81$ and $log_{b}(3)=0.13$ find $log_{b}(15)$

1. $0.1053$
2. $0.94$
3. $0.10$
4. $0.9$
5. $0.95$

10. If $log_{5}N=2$, find $N$

1. $\frac{5}{2}$
2. $10$
3. $\frac{2}{5}$
4. $log_{2}5$
5. $25$

## Monday, June 27, 2011

### CLEP College Algebra Practice Questions - 4

1. $(3x-5)^{2}=$

1. $9x^{2}-30x-25$
2. $9x^{2}+30x+25$
3. $39x-25$
4. $9x^{2}-25$
5. $9x^{2}-30x+25$

2. $5^{x+1}=25^{3x+1}$, then $x=$

1. $\frac{1}{5}$
2. $5$
3. $-\frac{1}{5}$
4. $0$
5. $\frac{1}{3}$

3. $log_{3}(x+5)=3$

1. $10$
2. $22$
3. $27$
4. $30$
5. $32$

4. $f(x)=7-3x^{3}$

1. $\sqrt[3]{\frac{7-x}{3}}$
2. $\frac{\sqrt[3]{7-x}}{3}$
3. $\sqrt[3]{\frac{x-7}{3}}$
4. $\frac{1}{7-3x^{3}}$
5. $7x^{3}+3$

5. $f(x)=3x+1$ and $g(x)=5x-1$

1. $15x+2$
2. $15x$
3. $15x^{2}+x+2$
4. $15x+4$
5. $15x-2$

6. Which quadrants of the xy-plane contain points of the graph of $3x-y>1$

1. $I$, $II$ and $III$ only
2. $I$, $II$ and $IV$ only
3. $I$, $III$ and $IV$ only
4. $II$ $III$ and $IV$ only
5. $I$, $II$, $III$ and $III$ only

7. $(\sqrt{3}i)^{4}=$

1. $9$
2. $-9$
3. $9i$
4. $-9i$
5. $-\sqrt{3}$

8. What are all real values of $x$ for which $\frac{2}{5-x}=\frac{1}{5}-\frac{1}{x}$

1. $x=-5$ only
2. $x=5$ only
3. $x=-5$
4. $x=-5$ and $x=0$
5. $x=-5$ and $x=-5$

9. When $\frac{5+6i}{1+i}$ is expressed in the form $a+bi$, what is the value of $a$.

10. If $x$, $2x+1$ and $7x+5$ are the first three terms of an arithmetic progression, then $x=$

1. $-\frac{3}{4}$
2. $-3$
3. $0$
4. $\frac{7}{5}$
5. $\frac{1}{5}$

## Sunday, June 26, 2011

### CLEP College Algebra Practice Questions - 3

1. The reduced form of $\sqrt{162x^{11}y^{17}}$ is:

1. $18x^{5}y^{8}\sqrt{2xy}$
2. $9x^{5}y^{8}\sqrt{2}$
3. $3x^{5}y^{8}\sqrt{2xy}$
4. $9x^{4}y^{4}\sqrt{2xy}$
5. $9x^{5}y^{8}\sqrt{2xy}$

2. $\frac{2\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}$ is equal to:

1. $-2$
2. $1$
3. $\frac{2x-y}{x-y}$
4. $\frac{2x-\sqrt{xy}+y}{x-y}$
5. $\frac{2x-3\sqrt{xy}+y}{x-y}$

3. Solve the equation: $2x^{6}+52x^{3}-54=0$

1. $-27$, $1$
2. $+3$, $-1$
3. $-3$
4. $1$, $27$
5. $-3$

4. The reduced form of $\frac{\frac{1}{x+y}-\frac{1}{y}}{x}$ is

1. $0$
2. $1$
3. $\frac{1}{xy+y^{2}}$
4. $-\frac{1}{xy+y^{2}}$
5. $xy+y^{2}$

5. Solve the equation: $\frac{1}{x-2}+\frac{1}{x+2}=\frac{1}{x^{2}-4}$

1. $-\frac{1}{2}$
2. $\frac{1}{2}$
3. $\frac{1}{4}$
4. $2$
5. $1$

6. Which factors $5x^{3}-3x^{2}-20x+12$ completely?

1. $(5x+3)(x+2)^{2}$
2. $(5x-3)(x+4)(x-1)$
3. $(5x+3)(x^{2}-4)$
4. $(5x^{2}+3)(x-4)$
5. $(5x-3)(x^{2}+4)$

7. Reduced $(\frac{7a^{-5}}{5c^{\frac{1}{2}}})^{-1}$

1. $\sqrt{\frac{7a^{5}}{5c}}$
2. $\frac{-14a^{5}}{5c}$
3. $\frac{7a^{5}\sqrt{c}}{5}$
4. $\frac{5a^{5}}{7\sqrt{c}}$
5. $\frac{5}{7}a^{5}\sqrt{c}$

## Saturday, June 25, 2011

### CLEP College Algebra Practice Questions - 2

1. Determine the range of the following function : $f(x)=-x^{4}+5$

1. $y \geq 5$
2. $y \geq -5$
3. $y \geq 4$
4. $y \leq -4$
5. $y \leq 5$

2. Solve the equation : $3(6x+2)=2x$

1. $x=- \frac{3}{8}$
2. $x=\frac{3}{8}$
3. $x=\frac{8}{3}$
4. $x=-\frac{8}{3}$
5. $x=-3$

3. What is the multiplicative inverse of $-7$?

1. $\frac{1}{7}$
2. $-\frac{1}{7}$
3. $0$
4. $7$
5. $-7$
4. Simplify : $\sqrt{169}.\sqrt{81}.\sqrt{196}$

1. $13689$
2. $21294$
3. $1638$
4. $1764$
5. $12356$
5. Factor: $b^{2}-121$

1. $(b-11)(b+11)$
2. $(b^{2}-11)(b^{2}+11)$
3. $(b^{2}+11)(b^{2}+11)$
4. $(b-11)(b-11)$
5. $(b+11)(b+11)$
6. Solve: $1+\frac{1}{x}=\frac{12}{x^{2}}$

1. $x=-4$ or $x=3$
2. $x= 4$ or $x=-3$
3. $x=-4$ or $x=-4$
4. $x=-3$ or $x=3$
5. $x= 6$ or $x=-2$
7. Factor the following equation: $a^{2}-2a-35$

1. $(a-7)(a+5)$
2. $(a+7)(a+5)$
3. $(a-5)(a-7)$
4. $(a-1)(a+35)$
5. $(a-35)(a+1)$
8. Solve the following inequality: $9(6-2x) \leq -12$

1. $x\geq 11$
2. $x \leq \frac{11}{3}$
3. $x \geq \frac{11}{3}$
4. $x\geq$ 3
5. $x \leq$ -11
9. Determine the x-intercepts of the following parabola: $y=3x^{2}+x-14$

1. $(2,0)$ and $(-\frac{7}{3},0)$
2. $(2,0)$ and $(-3,0)$
3. $(-\frac{3}{7},0)$ and $(-4,0)$
4. $(0,2)$ and $(0,-\frac{7}{3})$
5. $(0,-\frac{7}{3})$ and $(2,0)$

10. A Graph of $x^{2} + y^{2} = 9$ is a

1. Parabola
2. Hyperbola
3. Circle
4. Line
5. ellipse

## Friday, June 24, 2011

### CLEP College Mathematics Practice Questions - 1

1. Simplify the following expression : $8x+3-3x-7$
1. $5x-4$
2. $5x+4$
3. $11x-4$
4. $10x-4$
5. $-5x-4$

2. Determine the mean of the numbers : 20, 34, 36, 52, 60.
1. $35$
2. $40.1$
3. $40.4$
4. $40.6$
5. $50$

3. What is the rule of $f+g$ if $f(x)=10x+7$ and $g(x)=3x$
1. $30x+7$
2. $30x+21$
3. $7x+7$
4. $10x-7$
5. $13x+7$

4. What percent of 30 is 13

1. $43.33$
2. $43$
3. $80$
4. $72.3$
5. $35$

5. Find the inverse of the function $f(x)=-\frac{9}{5}x+1$

1. $b=-\frac{9}{5}a+5$
2. $a=\frac{9}{5}b-1$
3. $b=-\frac{9}{5}(a-1)$
4. $b=-\frac{9}{5}a-\frac{9}{5}$
5. $a=-\frac{9}{5}b-1$

6. What is the name give to two angles that add up to 180

1. $Complemtary$
2. $Adjacent$
3. $straight$
4. $right$
5. $supplementary$

7. Determine the mode of the following numbers : 6,7,7,5,5,5,9

1. $5$
2. $5.5$
3. $6.29$
4. $7$
5. $7.5$

8. Which of the following expressions is the same as $\frac{a^{-7}b^{2}}{a^{-3}}$

1. $\frac{a^{-4}}{b^{2}}$
2. $\frac{b^{2}}{a^{4}}$
3. $\frac{b^{2}}{a^{-4}}$
4. $b^{2}a^{-4}$
5. $a^{4}b^{2}$

9. Determine the range of the following set : 5.6, 10.2, 7.3, 9.9, 8.1, 9.7

1. $2.9$
2. $4.3$
3. $10.2$
4. $2.1$
5. $4.6$
10. If $f(x)=x^{5}$ and $g(x)=x^{2}-1$, what is the domain restriction on $f.g$

1. $x \leq 11$
2. $x \neq 1$
3. $x \geq 1$
4. There is no restriction
5. $x\leq 5$

## Thursday, June 23, 2011

### GMAT Besic Equations

1. $3(x-2)+6=2x$
2. $\frac{1}{3}x-1=\frac{5}{6}+\frac{7}{2}$
3. $\frac{7x-3}{7}=x+2$
4. $0.16x+1.1=0.2x+0.96$

### SAT Practice Questions - 1

1. $2(5x-5)+5(2x+2)=$
1. $0$
2. $20x$
3. $20x-10$
4. $20x+10$
5. $10x^{2}+20+x+20$

2. If $x=a+2$, and $y=-8-a$ then $x+y=$

1. $6$
2. $10$
3. $2a-6$
4. $-10$
5. $-6$

3. If $x \ne -5$, then $\frac{x^{2}+3x-10}{x+5}-(x-2)=$

4. If $(a-\frac{1}{a})^{2}=8$, then $a^{2}+\frac{1}{a^{2}}=$

1. $8$
2. $6$
3. $10$
4. $12$
5. $100$

5. $(x+y)^{2}=16$, and $x^{2}+y^{2}=6$ then $xy=$

1. $5$
2. $10$
3. $6$
4. $4$
5. $16$

6. $(x+y)=6$, and $x^{2}-y^{2}=2$ then $x-y=$

1. $12$
2. $4$
3. $6$
4. $\frac{1}{3}$
5. $3$

7. $\frac{15y+3}{3}-5y=$

1. $1$
2. $0$
3. $10y+1$
4. $3$
5. $3y+1$

8. if $b^{2}-a^{2}=9$ then $5(a-b)(a+b)=$

1. $45$
2. $\frac{9}{5}$
3. $4$
4. $50$
5. $-45$

9. When $c \ne 3$, then $\frac{c^{2}-9}{c-3}=$

1. $c-3$
2. $1$
3. $c+3$
4. $3-c$
5. $o$

10. If $b>0$, and $b^{2}-1=10 \times 12$, then $b=$

1. $9$
2. $1$
3. $12$
4. $10$
5. $11$

 1 B 2 E 3 0 4 C 5 A 6 D 7 A 8 E 9 C 10 E

### CLEP College Algebra Practice Questions - 1

1. $(3x-1)^{2}$

1. $3x^{2}+1$
2.
3. $9x^{2}-1$
4.
5. $9x^{2}+1$
6.
7. $9x^{2}-6x+1$
8.
9. $9x^{2}-3x+1$
2.
3. Which of the following is a factor of $9-(x+y)^{2}$

1. $(x+y)^{2}$
2.
3. $(x+y)$
4.
5. $3-x+y$
6.
7. $3+x+y$
8.
9. $9+x+y$
4.
5. $3t(2t^{2}+1)-(4-2t^{3}+10t)+1$

1. $8t^{2}+7t-3$
2.
3. $8t^{2}+7t+1$
4.
5. $8t^{2}-7t-3$
6.
7. $8t^{2}-7t-4$
8.
9. $2t^{3}-7t+4$
6.
7. If $x+3=y$ What is the value of $|y-x|+|x-y|$

1. $-6$
2.
3. $0$
4.
5. $3$
6.
7. $6$
8.
9. $-3$
8.
9. $\frac{\frac{x^{2}-4}{x+1}}{\frac{x-2}{x-1}}$

1. $\frac{x-1}{x+2}$
2.
3. $\frac{(x-1)(x+2)}{x+1}$
4.
5. $\frac{x^{2}-x-2}{x+1}$
6.
7. $\frac{1}{(x-1)(x+1)}$
8.
9. $\frac{x+2}{(x-1)(x+1)}$
10.
11. Which of the following is a factor of $2x^{2}+4x-9$

1. $x+\frac{2-\sqrt{22}}{2}$
2.
3. $x-2-\frac{\sqrt{22}}{2}$
4.
5. $x+2-\frac{\sqrt{22}}{2}$
6.
7. $x-\frac{2+\sqrt{22}}{2}$
8.
9. $x+2+\frac{\sqrt{22}}{2}$
12.
13. $\frac{(n+2)!}{n+1}-n=$

1. $0$
2.
3. $2$
4.
5. $n+2$
6.
7. $(n+1)!$
8.
9. $n+1$
14.
15. Of the following which is greatest?

1. $3^{(5^{7})}$
2.
3. $(3^{5})^{7}$
4.
5. $5^{(3^{7})}$
6.
7. $(5^{3})^{7}$
8.
9. $7^{(5^{3})}$
16.
17. Which of the following gives all values of x for wich $|x-3| \leq 7$?

1. $\{x/ -10 \leq x \leq 4 \}$
2.
3. $\{x/ -7 \leq x \leq 3 \}$
4.
5. $\{x/ -10 \leq x \leq -3 \}$
6.
7. $\{x/ -10 \leq x \leq -4 \}$
8.
9. $\{x/ -4 \leq x \leq -3 \}$
18.
19. Which of the following are the solutions of the equation  $x^{2}-x-1=0$ ?

1. $\frac{-1+\sqrt{5}}{2}$ or  $\frac{-1-\sqrt{5}}{2}$
2.
3. $-1+\frac{\sqrt{5}}{2}$ or  $-1-\frac{\sqrt{5}}{2}$
4.
5. $\frac{1+\sqrt{5}}{2}$ or  $\frac{1-\sqrt{5}}{2}$
6.
7. $1+\frac{\sqrt{5}}{2}$ or  $1-\frac{\sqrt{5}}{2}$
8.
9. $\frac{1+i\sqrt{5}}{2}$ or  $\frac{1-i\sqrt{5}}{2}$
 1 D 2 D 3 C 4 D 5 B 6 D 7 B 8 A 9 C 10 C