- The reduced form of $\sqrt{162x^{11}y^{17}}$ is:
- $18x^{5}y^{8}\sqrt{2xy}$
- $9x^{5}y^{8}\sqrt{2} $
- $3x^{5}y^{8}\sqrt{2xy} $
- $9x^{4}y^{4}\sqrt{2xy}$
- $9x^{5}y^{8}\sqrt{2xy}$
- $\frac{2\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}$ is equal to:
- $-2$
- $1 $
- $\frac{2x-y}{x-y} $
- $ \frac{2x-\sqrt{xy}+y}{x-y} $
- $\frac{2x-3\sqrt{xy}+y}{x-y} $
- Solve the equation: $2x^{6}+52x^{3}-54=0$
- $-27$, $1$
- $+3 $, $-1$
- $-3 $
- $1 $, $27$
- $-3 $
- The reduced form of $\frac{\frac{1}{x+y}-\frac{1}{y}}{x}$ is
- $0$
- $1$
- $\frac{1}{xy+y^{2}}$
- $-\frac{1}{xy+y^{2}} $
- $xy+y^{2} $
- Solve the equation: $\frac{1}{x-2}+\frac{1}{x+2}=\frac{1}{x^{2}-4}$
- $-\frac{1}{2}$
- $\frac{1}{2} $
- $\frac{1}{4} $
- $ 2$
- $1 $
- Which factors $5x^{3}-3x^{2}-20x+12$ completely?
- $(5x+3)(x+2)^{2}$
- $(5x-3)(x+4)(x-1) $
- $(5x+3)(x^{2}-4) $
- $(5x^{2}+3)(x-4) $
- $(5x-3)(x^{2}+4) $
- Reduced $(\frac{7a^{-5}}{5c^{\frac{1}{2}}})^{-1}$
- $\sqrt{\frac{7a^{5}}{5c}}$
- $\frac{-14a^{5}}{5c}$
- $\frac{7a^{5}\sqrt{c}}{5}$
- $ \frac{5a^{5}}{7\sqrt{c}}$
- $ \frac{5}{7}a^{5}\sqrt{c}$
This site prepare students for math exams, SAT, GRE, GMAT,CLEP practice test, CLEP college Algebra,CLEP precalculus,CLEP Mathematics
Sunday, June 26, 2011
CLEP College Algebra Practice Questions - 3
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment