- $(3x-5)^{2}=$
- $9x^{2}-30x-25$
- $9x^{2}+30x+25 $
- $39x-25 $
- $9x^{2}-25 $
- $9x^{2}-30x+25 $
- $5^{x+1}=25^{3x+1}$, then $x=$
- $\frac{1}{5}$
- $5 $
- $-\frac{1}{5} $
- $0 $
- $\frac{1}{3} $
- $log_{3}(x+5)=3$
- $10$
- $22 $
- $27 $
- $30 $
- $32 $
- $f(x)=7-3x^{3}$
- $\sqrt[3]{\frac{7-x}{3}}$
- $ \frac{\sqrt[3]{7-x}}{3}$
- $\sqrt[3]{\frac{x-7}{3}} $
- $\frac{1}{7-3x^{3}}$
- $7x^{3}+3$
- $f(x)=3x+1$ and $g(x)=5x-1$
- $15x+2$
- $15x $
- $15x^{2}+x+2 $
- $15x+4 $
- $15x-2 $
- Which quadrants of the xy-plane contain points of the graph of $3x-y>1$
- $I$, $II$ and $III$ only
- $I$, $II$ and $IV$ only
- $I$, $III$ and $IV$ only
- $II$ $III$ and $IV$ only
- $I$, $II$, $III$ and $III$ only
- $(\sqrt{3}i)^{4}=$
- $9$
- $-9 $
- $9i $
- $-9i $
- $-\sqrt{3} $
- What are all real values of $x$ for which $\frac{2}{5-x}=\frac{1}{5}-\frac{1}{x}$
- $x=-5$ only
- $x=5 $ only
- $x=-5 $
- $x=-5 $ and $x=0$
- $x=-5 $ and $x=-5$
- When $\frac{5+6i}{1+i}$ is expressed in the form $a+bi$, what is the value of $a$.
- If $x$, $2x+1$ and $7x+5$ are the first three terms of an arithmetic progression, then $x=$
- $-\frac{3}{4}$
- $-3$
- $0 $
- $\frac{7}{5} $
- $\frac{1}{5} $
This site prepare students for math exams, SAT, GRE, GMAT,CLEP practice test, CLEP college Algebra,CLEP precalculus,CLEP Mathematics
Monday, June 27, 2011
CLEP College Algebra Practice Questions - 4
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment