- If $n \ne 0$ , $(2)^{5n}(8)^{7n}(32)^{3n}$
- $(32)^{15n}$
- $(8)^{15n} $
- $(2)^{5n} $
- $ (2)^{41n}$
- $(2)^{21n} $
- $\sqrt{32}+5\sqrt{50}-5\sqrt{2}$
- $24\sqrt{2}$
- $24\sqrt{8} $
- $20\sqrt{2} $
- $4\sqrt{2} $
- $24\sqrt{32} $
- $\sqrt{1125}+7\sqrt{180}-5\sqrt{5}$
- $5\sqrt{5}$
- $-5\sqrt{5} $
- $62\sqrt{5} $
- $62\sqrt{15} $
- $62\sqrt{3} $
- $\sqrt[3]{\frac{-54}{-2}}$
- $3$
- $-3 $
- $8 $
- $-\sqrt{3} $
- $\sqrt{3} $
- $\sqrt{3} \div \sqrt[5]{3}$
- $3^{5}$
- $\sqrt{3} $
- $\sqrt[10]{3} $
- $\sqrt[5]{3} $
- $\sqrt[10]{27} $
- Simplify $\frac{4a^{0}}{(4a)^{0}}$
- Simplify $\frac{6x^{5}+12x^{4}}{3x^{3}}$
- $2x^{2}+x$
- $2x^{2}+4 $
- $2x(x+2)$
- $2x+4$
- $2x^{2}-4x$
- Simplify $\frac{x^{2}-3x}{x^{2}-9}+\frac{3}{x+3}$
- $x^{2}-4x+4$
- $x-4 $
- $x+4$
- $1$
- $\frac{1}{4}$
- Simplify $\frac{\sqrt[3]{x}}{\sqrt[6]{x}}$
- $\sqrt{x^{6}}$
- $\sqrt[3]{x}$
- $\sqrt[6]{x}$
- $x^{3}$
- $x^{6}$
- Simplify $\frac{x^{4}-y^{4}}{x^{2}+y^{2}}$
- $x^{2}+y^{2}$
- $x^{2}-y^{2} $
- $x^{2}y^{2}$
- $0$
- $2\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$
Answer Key 1 D 2 A 3 C 4 A 5 E 6 4 7 C 8 D 9 C 10 B
This site prepare students for math exams, SAT, GRE, GMAT,CLEP practice test, CLEP college Algebra,CLEP precalculus,CLEP Mathematics
Thursday, June 30, 2011
CLEP College Algebra Practice Questions -- (Algebraic operations)
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment