- $2(5x-5)+5(2x+2)=$
- $0$
- $20x$
- $20x-10$
- $20x+10$
- $10x^{2}+20+x+20$
- If $x=a+2$, and $y=-8-a$ then $x+y=$
- $6$
- $10$
- $2a-6$
- $-10$
- $-6$
- If $x \ne -5$, then $\frac{x^{2}+3x-10}{x+5}-(x-2)=$
- If $(a-\frac{1}{a})^{2}=8$, then $a^{2}+\frac{1}{a^{2}}=$
- $8$
- $6$
- $10$
- $12$
- $100$
- $(x+y)^{2}=16$, and $x^{2}+y^{2}=6$ then $xy=$
- $5$
- $10$
- $6$
- $4$
- $16$
- $(x+y)=6$, and $x^{2}-y^{2}=2$ then $x-y=$
- $12$
- $4$
- $6$
- $\frac{1}{3}$
- $3$
- $\frac{15y+3}{3}-5y=$
- $1$
- $0$
- $10y+1$
- $3$
- $3y+1$
- if $b^{2}-a^{2}=9$ then $5(a-b)(a+b)=$
- $45$
- $\frac{9}{5}$
- $4$
- $50$
- $-45$
- When $c \ne 3$, then $\frac{c^{2}-9}{c-3}=$
- $c-3$
- $1$
- $c+3$
- $3-c$
- $o$
- If $b>0$, and $b^{2}-1=10 \times 12$, then $b=$
- $9$
- $1$
- $12$
- $10$
- $11$
Answer Key 1 B 2 E 3 0 4 C 5 A 6 D 7 A 8 E 9 C 10 E
This site prepare students for math exams, SAT, GRE, GMAT,CLEP practice test, CLEP college Algebra,CLEP precalculus,CLEP Mathematics
Thursday, June 23, 2011
SAT Practice Questions - 1
Subscribe to:
Post Comments (Atom)
I believe you have two mistakes above:
ReplyDeleteFirst: the answer to 6 is "E"
y^2-x^2=(x+y)(x-y)
since, (x+y)=2 and we have that y^2-x^2=6
then, (x-y)=6/2
the result, in turn, should be 3 NOT 1/3
Second:
In #8, the answer should be A
Again, y^2-x^2=(x+y)(x-y)
so, we have that y^2-x^2=9
In turn, we know that (x+y)(x-y)=9 as well.
So, 5(x+y)(x-y)= 5*9= 45 NOT -45
Correct me if I'm wrong!XD