- 2(5x-5)+5(2x+2)=
- 0
- 20x
- 20x-10
- 20x+10
- 10x^{2}+20+x+20
- If x=a+2, and y=-8-a then x+y=
- 6
- 10
- 2a-6
- -10
- -6
- If x \ne -5, then \frac{x^{2}+3x-10}{x+5}-(x-2)=
- If (a-\frac{1}{a})^{2}=8, then a^{2}+\frac{1}{a^{2}}=
- 8
- 6
- 10
- 12
- 100
- (x+y)^{2}=16, and x^{2}+y^{2}=6 then xy=
- 5
- 10
- 6
- 4
- 16
- (x+y)=6, and x^{2}-y^{2}=2 then x-y=
- 12
- 4
- 6
- \frac{1}{3}
- 3
- \frac{15y+3}{3}-5y=
- 1
- 0
- 10y+1
- 3
- 3y+1
- if b^{2}-a^{2}=9 then 5(a-b)(a+b)=
- 45
- \frac{9}{5}
- 4
- 50
- -45
- When c \ne 3, then \frac{c^{2}-9}{c-3}=
- c-3
- 1
- c+3
- 3-c
- o
- If b>0, and b^{2}-1=10 \times 12, then b=
- 9
- 1
- 12
- 10
- 11
Answer Key 1 B 2 E 3 0 4 C 5 A 6 D 7 A 8 E 9 C 10 E
This site prepare students for math exams, SAT, GRE, GMAT,CLEP practice test, CLEP college Algebra,CLEP precalculus,CLEP Mathematics
Thursday, June 23, 2011
SAT Practice Questions - 1
Subscribe to:
Post Comments (Atom)
I believe you have two mistakes above:
ReplyDeleteFirst: the answer to 6 is "E"
y^2-x^2=(x+y)(x-y)
since, (x+y)=2 and we have that y^2-x^2=6
then, (x-y)=6/2
the result, in turn, should be 3 NOT 1/3
Second:
In #8, the answer should be A
Again, y^2-x^2=(x+y)(x-y)
so, we have that y^2-x^2=9
In turn, we know that (x+y)(x-y)=9 as well.
So, 5(x+y)(x-y)= 5*9= 45 NOT -45
Correct me if I'm wrong!XD