This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
math exams: CLEP College Algebra Practice Questions - 1
CLEP College Algebra Practice Questions - 1
- $(3x-1)^{2} $
- $3x^{2}+1$
- $9x^{2}-1$
- $9x^{2}+1$
- $9x^{2}-6x+1$
- $9x^{2}-3x+1$
- Which of the following is a factor of $9-(x+y)^{2}$
- $(x+y)^{2}$
- $(x+y)$
- $3-x+y$
- $3+x+y$
- $9+x+y$
- $3t(2t^{2}+1)-(4-2t^{3}+10t)+1$
- $8t^{2}+7t-3$
- $8t^{2}+7t+1$
- $8t^{2}-7t-3$
- $8t^{2}-7t-4$
- $2t^{3}-7t+4$
- If $x+3=y$ What is the value of $|y-x|+|x-y|$
- $-6$
- $0$
- $3$
- $6$
- $-3$
- $\frac{\frac{x^{2}-4}{x+1}}{\frac{x-2}{x-1}}$
- $\frac{x-1}{x+2}$
- $\frac{(x-1)(x+2)}{x+1}$
- $\frac{x^{2}-x-2}{x+1}$
- $\frac{1}{(x-1)(x+1)}$
- $\frac{x+2}{(x-1)(x+1)}$
- Which of the following is a factor of $2x^{2}+4x-9$
- $x+\frac{2-\sqrt{22}}{2}$
- $x-2-\frac{\sqrt{22}}{2}$
- $x+2-\frac{\sqrt{22}}{2}$
- $x-\frac{2+\sqrt{22}}{2}$
- $x+2+\frac{\sqrt{22}}{2}$
- $\frac{(n+2)!}{n+1}-n=$
- $0$
- $2$
- $n+2$
- $(n+1)!$
- $n+1$
- Of the following which is greatest?
- $3^{(5^{7})}$
- $(3^{5})^{7}$
- $5^{(3^{7})}$
- $(5^{3})^{7}$
- $7^{(5^{3})}$
- Which of the following gives all values of x for wich $|x-3| \leq 7$?
- $\{x/ -10 \leq x \leq 4 \}$
- $\{x/ -7 \leq x \leq 3 \}$
- $\{x/ -10 \leq x \leq -3 \}$
- $\{x/ -10 \leq x \leq -4 \}$
- $\{x/ -4 \leq x \leq -3 \}$
- Which of the following are the solutions of the equation $x^{2}-x-1=0$ ?
- $\frac{-1+\sqrt{5}}{2}$ or $\frac{-1-\sqrt{5}}{2}$
- $-1+\frac{\sqrt{5}}{2}$ or $-1-\frac{\sqrt{5}}{2}$
- $\frac{1+\sqrt{5}}{2}$ or $\frac{1-\sqrt{5}}{2}$
- $1+\frac{\sqrt{5}}{2}$ or $1-\frac{\sqrt{5}}{2}$
- $\frac{1+i\sqrt{5}}{2}$ or $\frac{1-i\sqrt{5}}{2}$
Answer Key
1 | D |
2 | D |
3 | C |
4 | D |
5 | B |
6 | D |
7 | B |
8 | A |
9 | C |
10 | C |
No comments:
Post a Comment