This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
math exams: CLEP College Algebra Practice Questions -- (Equations )
CLEP College Algebra Practice Questions -- (Equations )
- $\frac{9}{x+5}=\frac{3}{x+1}$
- $1$
- $3 $
- $ 5$
- $9 $
- $ 0$
- $xy+5y=10$ and $x+2=7$, then $y=$
- $0$
- $1 $
- $ 5$
- $ 7$
- $ 2$
- $\frac{9x}{5}=(a^{7}-1)^{3}$ and $a=-1$, solve for $x$.
- $-40$
- $-\frac{40}{9} $
- $\frac{40}{9} $
- $\frac{35}{9} $
- $0 $
- $\frac{18}{x^{2}+6x+27}=1$
- $\{-3,3\}$
- $\{-3\} $
- $\{3\} $
- $\{-3,0\} $
- $\{-3,-3\} $
- Find the solution of the following equation : $|5x-1|=9$
- $\{2\}$
- $\{-\frac{8}{5}\} $
- $\{-\frac{8}{5},2\} $
- $\{\frac{9}{5}\} $
- $\{\frac{1}{5}\} $
- If $a=(b+5)^{2}$ and $b=-5$, what is $a$?
- $-5$
- $5 $
- $0 $
- $1 $
- $2 $
- Solve $x^{2}+2x+11=0$
- $-1+\sqrt{10}$ or $-1-\sqrt{10}$
- $1+i\sqrt{10}$ or $-1-i\sqrt{10}$
- or $-1-i\sqrt{10}$
- $-1+i\sqrt{10}$ or $-1-i\sqrt{10}$
- $-1+i\sqrt{10}$
- If $\frac{a}{b}=5$ then $a^{2}-25b^{2}+7=$
- $0$
- $7 $
- $ -1$
- $ 25$
- $ 5$
- Solve $9x-6 \leq 5x+2$
- $x \leq 2$
- $x \geq 2 $
- $ x \leq -2$
- $ x \geq -2$
- $x < 2 $
- Solve $\frac{3}{x}=\frac{2}{x-1}$
- $-3$
- $2 $
- $ -2$
- $ 3$
- There is no solution
Answer Key
1 | A |
2 | B |
3 | B |
4 | E |
5 | C |
6 | C |
7 | D |
8 | B |
9 | A |
10 | D |
No comments:
Post a Comment