- Determine the range of the following function : $f(x)=-x^{4}+5$
- $y \geq 5$
- $y \geq -5 $
- $y \geq 4 $
- $y \leq -4 $
- $y \leq 5 $
- Solve the equation : $3(6x+2)=2x$
- $x=- \frac{3}{8}$
- $x=\frac{3}{8} $
- $ x=\frac{8}{3}$
- $x=-\frac{8}{3} $
- $x=-3 $
- What is the multiplicative inverse of $-7$?
- $\frac{1}{7}$
- $-\frac{1}{7} $
- $ 0$
- $7 $
- $-7 $
- Simplify : $\sqrt{169}.\sqrt{81}.\sqrt{196}$
- $13689$
- $ 21294$
- $1638 $
- $1764 $
- $12356 $
- Factor: $b^{2}-121$
- $(b-11)(b+11)$
- $(b^{2}-11)(b^{2}+11) $
- $ (b^{2}+11)(b^{2}+11)$
- $(b-11)(b-11) $
- $(b+11)(b+11) $
- Solve: $1+\frac{1}{x}=\frac{12}{x^{2}}$
- $x=-4$ or $x=3$
- $x= 4$ or $x=-3$
- $x=-4 $ or $x=-4$
- $x=-3 $ or $x=3$
- $x= 6$ or $x=-2$
- Factor the following equation: $a^{2}-2a-35$
- $(a-7)(a+5)$
- $(a+7)(a+5) $
- $ (a-5)(a-7)$
- $(a-1)(a+35) $
- $(a-35)(a+1) $
- Solve the following inequality: $9(6-2x) \leq -12$
- $x\geq 11$
- $x \leq \frac{11}{3} $
- $x \geq \frac{11}{3} $
- $ x\geq$ 3
- $ x \leq$ -11
- Determine the x-intercepts of the following parabola: $y=3x^{2}+x-14$
- $(2,0)$ and $(-\frac{7}{3},0)$
- $(2,0) $ and $(-3,0)$
- $(-\frac{3}{7},0) $ and $(-4,0)$
- $ (0,2)$ and $(0,-\frac{7}{3})$
- $(0,-\frac{7}{3}) $ and $(2,0)$
- A Graph of $x^{2} + y^{2} = 9$ is a
- Parabola
- Hyperbola
- Circle
- Line
- ellipse
This site prepare students for math exams, SAT, GRE, GMAT,CLEP practice test, CLEP college Algebra,CLEP precalculus,CLEP Mathematics
Saturday, June 25, 2011
CLEP College Algebra Practice Questions - 2
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment