- $4x+3=-1$, then $x-1=$
- $2$
- $1$
- $0$
- $-1$
- $-2$
- $\frac{7}{\frac{1}{6}+1}$
- $-6$
- $7 $
- $\frac{1}{6} $
- $\frac{1}{6} $
- $6 $
- $32^{17}=2^{3a+4}$, then $a=$
- $3$
- $ 9$
- $ 27$
- $ 81$
- $ 243$
- $a=5b$, $b^{2}=3c$ and $5c=d$, then $\frac{a^{2}}{d}=$
- $15$
- $\frac{3}{5}$
- $\frac{15}{3}$
- $9$
- $\frac{1}{5}$
- $(x-3)(x+2)=(x+4)(x-5)$
- $7$
- $14$
- $-7$
- $3$
- There is no solution
- $\frac{1}{2}$ of $0.02$ percent equals
- $1$
- $0.1$
- $0.01$
- $0.001$
- $0.0001$
- If the average of $2x$, $3x$ and $5x$ is 3, then $x=$
- $\frac{10}{9}$
- $9$
- $10$
- $\frac{9}{10}$
- $-\frac{9}{10}$
- $-2^{5}-(1-x^{2})^{2}$
- $-x^{4}+2x^{2}+31$
- $-x^{4}+2x^{2}-31$
- $-x^{4}+2x^{2}+33$
- $-x^{4}-2x^{2}+33$
- $-x^{4}+2x^{2}-33$
- A truckmaker sells six models of cars, and each model comes with 7 options.
How many different types of trucks does the truckmaker sell?
- $20$
- $ 25$
- $ 32$
- $42 $
- $52 $
- If $a$, $b$, and $c$ are consecutive integers and $a < b < c$, which of the following must be true?
- $b^{3}$ is a prime number
- $\frac{a+c}{2}=b$
- $\frac{c-a}{2}=1$ is odd
- $\frac{ab}{3}$
- $c-a=b$
This site prepare students for math exams, SAT, GRE, GMAT,CLEP practice test, CLEP college Algebra,CLEP precalculus,CLEP Mathematics
Monday, July 11, 2011
GRE Practice Questions -2
Subscribe to:
Post Comments (Atom)
GMAT Coaching in Gurgaon
ReplyDeleteGRE Coaching in Gurgaon