Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. math exams: July 2011

Wednesday, July 27, 2011

GRE Practice Questions -3

  1. If $m=\frac{\sqrt{5}-3}{\sqrt{2}+1}$, then for which one of the following equals $m-3$

    1. $\sqrt{10}-3\sqrt{2}-\sqrt{5}+3$
    2. $\sqrt{10}-3\sqrt{2}-\sqrt{5}$
    3. $\sqrt{10}-3\sqrt{2}+\sqrt{5} $
    4. $\sqrt{10}-3\sqrt{2}-\sqrt{5}-6 $
    5. $\sqrt{10}+3\sqrt{2}-\sqrt{3} $

  2. If $y < 0$ and $x$ is 7 more than the square of $y$, which one of the following expresses $y$ in terms of $x$?

    1. $y=-\sqrt{x-7}$
    2. $y=\sqrt{x-7} $
    3. $y=\sqrt{x+7} $
    4. $y=\sqrt{x^{2}-7}$
    5. $y=-\sqrt{x^{2}-7}$
  3. If $\sqrt[m]{125}=5^{3m}$ and $4^{m} > \frac{1}{2}$, then what is the value of $m$?

    1. $-1$
    2. $-\frac{1}{5}$
    3. $0 $
    4. $\frac{1}{5}$
    5. $1$
  4. Column A Column B
    $x^{2}(x^{5})^{2}$ $(x^{4})^{3}$

  5. Column A Column B
    $17^{\frac{1}{x}-\frac{1}{y}}$ $0 < x < y$ $17^{x-y}$


  6. Answer Key
    1 A
    2 B
    3 E
    4 C
    5 A

Monday, July 25, 2011

GMAT Practice Questions -5

  1. If $x \ne 3$, then $\frac{3x^{2}+18x+27}{(x+3)^{2}}$

    1. $1$
    2. $3 $
    3. $ 9$
    4. $ 27$
    5. $81 $

  2. If $\frac{x+5}{x-5}=y$, what is the value of $x$ in terms of $y$?

    1. $-5-y$
    2. $\frac{5}{y} $
    3. $\sqrt{y^{2}+5} $
    4. $\frac{-5y-5}{1-y} $
    5. $\frac{-5y+5}{1-y} $

  3. $\frac{1-\frac{1}{3}}{2}$

    1. $3$
    2. $\frac{2}{3} $
    3. $\frac{3}{2} $
    4. $\frac{1}{3} $
    5. $\frac{1}{5} $

  4. $\frac{\frac{1}{x}}{\frac{1}{y}-z}$

    1. $\frac{xy}{y-xyz}$
    2. $\frac{1}{xy-xyz} $
    3. $\frac{y}{xyz+x} $
    4. $\frac{y}{x-xyz} $
    5. $\frac{x-xyz}{y} $

  5. The average of $x$, $\frac{1}{x}$ and $\frac{1}{x^{2}}$ is

    1. $\frac{1+x^{2}}{3x}$
    2. $\frac{1+x^{2}+x^{3}}{3x^{2}} $
    3. $ \frac{1+x+x^{2}}{3x^{2}}$
    4. $\frac{1-x+x^{2}}{3x} $
    5. $\frac{1+x^{2}+x^{3}}{3} $

  6. $\frac{1}{5}$ of $.01$ percent equals :

    1. $.00002$
    2. $.0002 $
    3. $.002 $
    4. $.02 $
    5. $.2 $

  7. $\frac{2^{a+1}-2^{a-1}}{2^{a+1}+2^{a-1}}$

    1. $\frac{1}{4}$
    2. $\frac{3}{5} $
    3. $2 $
    4. $\frac{1}{2} $
    5. $\frac{5}{3} $

  8. If $x$ is $\frac{50}{51}$ of $\frac{51}{52}$ and $y=\frac{50}{51}$, then $\frac{x}{y}=$

    1. $\frac{50}{51}$
    2. $\frac{50}{52} $
    3. $\frac{51}{52} $
    4. $\frac{2550}{2500}$
    5. $\frac{2601}{2704}$

  9. The decimal $.01$ is how many times greater than the decimal $(.0001)^{4}$

    1. $10^{6}$
    2. $10^{8} $
    3. $10^{10} $
    4. $10^{12} $
    5. $10^{14} $

  10. Let $a=.79$, $b=\sqrt{.79}$ and $c=(.79)^{2}$, then which of the following is true?

    1. $a < b < c$

    2. $c < b < a$

    3. $a < b < c$

    4. $c < a < b$

    5. $b < a < c$


    Answer Key
    1 B
    2 D
    3 D
    4 D
    5 C
    6 A
    7 B
    8 C
    9 E
    10 D

Friday, July 22, 2011

GMAT Practice Questions -4

  1. If $n$ is a positive integer and $(n+3)(n+5)$ is odd, then $(n+4)(n+6)$ must be a multiple of which one of the following?

    1. $3$
    2. $ 5$
    3. $ 7$
    4. $ 8$
    5. $ 16$

  2. The number of prime numbers divisible par 2 plus the number of prime numbers divisible by 5 is

    1. $0$
    2. $ 1$
    3. $ 2$
    4. $ 3$
    5. $ 4$

  3. If $13x+17=0$, then $-13|x|$ equals which one of the following?

    1. $-\frac{17}{13}$
    2. $\frac{17}{13} $
    3. $17 $
    4. $13 $
    5. $-17 $

  4. Which one of the following is divisible by both 2 and 3?

    1. $1007$
    2. $ 3096$
    3. $1616 $
    4. $ 2306$
    5. $ 1791$

  5. Which one of the following equals the product of exactly two prime numbers?

    1. $13.6$
    2. $11.9$
    3. $17.21$
    4. $19.51$
    5. $17.23$

  6. If $m$, $n$, and $p$ are different prime numbers, then the least common multiple of the the three numbers must equal which one of the following?

    1. $mn(p+n)$
    2. $m+n+p$
    3. $m+np$
    4. $m+n-p$
    5. $pnm$

  7. Each of the positive integer $a$ and $b$ ends with the digit 3. With which one of the following numbers does $a-b$ ends?

    1. $0$
    2. $ 1$
    3. $ 2$
    4. $ 3$
    5. $ 4$

  8. If $p-10$ is divisible by 4, then which one of the following must be divisible by 4?

    1. $p$
    2. $p-2$
    3. $p-6$
    4. $p+3$
    5. $p+8$

Wednesday, July 20, 2011

GMAT Practice Questions -3

  1. If $a+5a$ is 6 less than $b+5b$, then $a-b=$

    1. $6$
    2. $-1$
    3. $-\frac{1}{6}$
    4. $\frac{1}{6}$
    5. $-6$

  2. If $w \ne 0$, $w=5x=\sqrt{5}y$, what is the value of $w-x$ in terms of $y$?

    1. $5y$
    2. $\frac{\sqrt{5}}{5}y$
    3. $\sqrt{5y}$
    4. $\frac{5}{4\sqrt{5}}y$
    5. $\frac{4\sqrt{5}}{5}y $

  3. If $(a-1)(a+5)(a-7)=0$, and $a < 0$, then $a=$


    1. $-1$

    2. $-7$

    3. $-5$

    4. $-3$

    5. $-2$

  4. A aytem of equations is as shown below
    $x-l=8$
    $x+m=7 $
    $x-p=6 $
    $x+q=5 $
    What is the value of $l+m+p+q$?

    1. $-4$
    2. $-3$
    3. $-2$
    4. $-1$
    5. $0$

  5. If $\frac{a^{2}-25}{20a}=\frac{a-5}{a+5}$, $a=5 \ne 0$, and $a \ne 0$, then $a=$

    1. $1$
    2. $3 $
    3. $5 $
    4. $20 $
    5. $25 $

  6. If $a$, $b$, $c$,and $d$ are not equal to 0 or 1, and if $a^{x}=b$, $b^{y}=c$, $c^{z}=d$ and $d^{t}=a$, then $xyzt=$

    1. $0$
    2. $ 1$
    3. $ abc$
    4. $abcd $
    5. $a^{b^{c^{d}}} $

  7. If $(x-3y)(x+3y)=-9$ and $(3x-y)(3x+y)=-1$, then $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}=$

    1. $-2$
    2. $-1 $
    3. $0 $
    4. $1 $
    5. $2 $

  8. If $p-q=5$ and $pq=11$, then is the value of $\frac{1}{p^{2}}+\frac{1}{q^{2}}$?

    1. $\frac{25}{121}$
    2. $-\frac{47}{121} $
    3. $\frac{5}{11}$
    4. $-\frac{5}{11}$
    5. $\frac{47}{121}$

Sunday, July 17, 2011

GMAT Practice Questions -2

  1. If n is an integer, which of the following CANNOT be an integer?

    1. $\frac{n+2}{2}$
    2. $\sqrt{n+1} $
    3. $\frac{3}{n+2} $
    4. $\sqrt{n^{2}+5} $
    5. $\sqrt{\frac{1}{n^{2}+3}} $

  2. If n is an integer, which one of the following is an odd integer?

    1. $n^{2}$
    2. $\frac{n+3}{2} $
    3. $-2n-8 $
    4. $n^{2}-3 $
    5. $\sqrt{n^{4}+1} $

  3. If $x$, $y$, $z$ and $t$ are positive integers such that $x < y < z < t$ and $x+y+z+t=10$, then what is the value of $t$?


    1. $2$

    2. $3$

    3. $4$

    4. $5$

    5. $6$

  4. The remainder when the positive integer $m$ is divided by $n$ is r. What is the remainder when $3m$ is divided by $3n$?

    1. $r$
    2. $3r$
    3. $3n$
    4. $m-3n$
    5. $3(m-nr)$

  5. If $(x-5)(x+4)=(x-4)(x+5)$, then $x=$

    1. $-5$
    2. $ -4$
    3. $0 $
    4. $4 $
    5. $5 $

  6. If $(3x-1)^{2}=121$, then which one of the following COULD equal x?

    1. $-4$
    2. $\frac{10}{3}$
    3. $\frac{13}{3} $
    4. $-\frac{10}{3} $
    5. $\frac{17}{3} $

  7. (The average of 5 consecutive integers starting from 17)-(The average of 6 consecutive integers starting from 17)=

    1. $-\frac{1}{8}$
    2. $-\frac{1}{2}$
    3. $0$
    4. $\frac{1}{8}$
    5. $\frac{1}{2}$

  8. If $n^{3}+n^{2}-n-2=-1$, then which one of the following could be the value of $n$

    1. $0$
    2. $1 $
    3. $2 $
    4. $3 $
    5. $4 $

  9. Solve the the system of equations given?
    $x+3y=8$
    $x+2y=5$

    1. $-1,4$
    2. $1,3$
    3. $2,3$
    4. $1,-3$
    5. $-1,3$

  10. If $(a-b)(a+b)=7 \times 3$ then $a$ and $b$ equals respectively?

    1. $-5,-2$
    2. $5,3 $
    3. $7,2 $
    4. $9,2 $
    5. $-3,-10 $

Monday, July 11, 2011

GRE Practice Questions -2

  1. $4x+3=-1$, then $x-1=$

    1. $2$
    2. $1$
    3. $0$
    4. $-1$
    5. $-2$

  2. $\frac{7}{\frac{1}{6}+1}$

    1. $-6$
    2. $7 $
    3. $\frac{1}{6} $
    4. $\frac{1}{6} $
    5. $6 $

  3. $32^{17}=2^{3a+4}$, then $a=$

    1. $3$
    2. $ 9$
    3. $ 27$
    4. $ 81$
    5. $ 243$

  4. $a=5b$, $b^{2}=3c$ and $5c=d$, then $\frac{a^{2}}{d}=$

    1. $15$
    2. $\frac{3}{5}$
    3. $\frac{15}{3}$
    4. $9$
    5. $\frac{1}{5}$

  5. $(x-3)(x+2)=(x+4)(x-5)$

    1. $7$
    2. $14$
    3. $-7$
    4. $3$
    5. There is no solution

  6. $\frac{1}{2}$ of $0.02$ percent equals

    1. $1$
    2. $0.1$
    3. $0.01$
    4. $0.001$
    5. $0.0001$

  7. If the average of $2x$, $3x$ and $5x$ is 3, then $x=$

    1. $\frac{10}{9}$
    2. $9$
    3. $10$
    4. $\frac{9}{10}$
    5. $-\frac{9}{10}$

  8. $-2^{5}-(1-x^{2})^{2}$

    1. $-x^{4}+2x^{2}+31$
    2. $-x^{4}+2x^{2}-31$
    3. $-x^{4}+2x^{2}+33$
    4. $-x^{4}-2x^{2}+33$
    5. $-x^{4}+2x^{2}-33$

  9. A truckmaker sells six models of cars, and each model comes with 7 options.
    How many different types of trucks does the truckmaker sell?

    1. $20$
    2. $ 25$
    3. $ 32$
    4. $42 $
    5. $52 $

  10. If $a$, $b$, and $c$ are consecutive integers and $a < b < c$, which of the following must be true?


    1. $b^{3}$ is a prime number

    2. $\frac{a+c}{2}=b$

    3. $\frac{c-a}{2}=1$ is odd

    4. $\frac{ab}{3}$

    5. $c-a=b$

GMAT Practice Questions -1

  1. If $C=\frac{7r}{3s}$ and $s \ne 0$, what is the value of C?

    1. $r=6s$
    2. $r=\frac{3}{7}$

  2. If $7a=5b$ and $ab \ne 0$, what is the ratio of $\frac{a}{5}$ to $\frac{b}{7}$

    1. $\frac{49}{25}$
    2. $\frac{7}{5}$
    3. $\frac{5}{7}$
    4. $1$
    5. $\frac{25}{49}$

  3. If the diameter of a circle is $18$, then the area of the circle is

    1. $9 \pi$
    2. $18 \pi $
    3. $36 \pi $
    4. $81 \pi $
    5. $324 \pi $

  4. For any numbers $a$ and $b$, $a*b=ab(5-b)$. If $a$ and $a*b$ both represent positive numbers, which of the following could be a value of $b$?

    1. $-7$
    2. $-1$
    3. $3$
    4. $6$
    5. $9$

  5. $\sqrt{7^{2}+5^{2}-10}$

    1. $4\sqrt{2}$
    2. $6$
    3. $8$
    4. $10$
    5. $\sqrt{117} $

  6. What is the perimeter of a square with area $\frac{7p}{4}$?

    1. $\frac{7p}{4}$
    2. $\frac{7p^{2}}{4} $
    3. $7p$
    4. $7p^{2}$
    5. $\frac{4p}{7}$

  7. $\sqrt{169}+\sqrt{256}+\sqrt{361}=$

    1. $19$
    2. $29 $
    3. $36 $
    4. $46 $
    5. $48 $

  8. If $45$ percent of $500$ is $50$ percent of x, then $x=$

    1. $350$
    2. $400$
    3. $450$
    4. $600$
    5. $1,200$

  9. $(5^{3}-1)(5^{3}+1)(5^{6}+1)(5^{12}+1)$

    1. $(5^{24}-1)$
    2. $(5^{24}+1)$
    3. $(5^{48}-1)$
    4. $(5^{96}+1)$
    5. $5^{3}(5^{24}-1) $

  10. How many minutes does it take to travel $160$ miles at $200$ miles per hour?

    1. $13$
    2. $16$
    3. $45$
    4. $48$
    5. $52$

Sunday, July 10, 2011

GRE Practice Questions -1

  1. If $5x+7=11$, then $5x-4=0$

    1. $11$
    2. $7$
    3. $5$
    4. $1$
    5. $0$

  2. The smallest prime number greter than 50 is

    1. $51$
    2. $52$
    3. $53$
    4. $54$
    5. $55$

  3. $\frac{6}{\frac{1}{5}+1}$

    1. $1$
    2. $\frac{1}{5}$
    3. $\frac{1}{6}$
    4. $5$
    5. $6$

  4. $\sqrt{(120-39)(68+13)}$

    1. $2$
    2. $20$
    3. $40$
    4. $80$
    5. $81$

  5. $(9^{y})^{3}$

    1. $9^{y+3}$
    2. $9^{6y} $
    3. $3^{3y^{2}} $
    4. $9^{y^{3}} $
    5. $3^{6y} $



  6. $27^{13}=3^{a}$, then $a=$

    1. $39$
    2. $29$
    3. $19$
    4. $13$
    5. $9$



  7. $x-y=h$, then $5x^{2}-10xy+5y^{2}=$

    1. $5h^{2}$
    2. $10h$
    3. $h^{2}$
    4. $5h$
    5. $10h^{2} $



  8. $27x^{2}-12$

    1. $3(3x-2)(3x+2)$
    2. $3(9x-2)(9x+2)$
    3. $9(3x-2)(3x+2)$
    4. $3(3x-2)(9x+2)$
    5. $(9x-2)(9x+2)$

  9. If the average of $3x$ and $9x$ is 6, then $x=$

    1. $20$
    2. $19 $
    3. $9$
    4. $3$
    5. $1$

  10. What percent of $5x$ is $10y$ if $x=2y$?

    1. $20 \%$
    2. $30 \%$
    3. $40 \%$
    4. $45 \%$
    5. $50 \%$

Friday, July 8, 2011

SAT Practice Questions - 7

  1. If $3x+7=5x+1$

    1. $2.5$
    2. $3.5 $
    3. $4 $
    4. $3 $
    5. $ 4.5$

  2. What is the next term in the sequence: 6, 3, 10, 7, 14, 11, ...?

    1. $19$
    2. $15 $
    3. $6 $
    4. $ 17$
    5. $ 18$

  3. The area of the basis of Cylinder A is 8 times the area of the basis of Cylinder B. What is the radius of Cylinder A in terms of the radius of Cylinder B?

    1. $r_{A}=\frac{r_{B}}{8}$
    2. $r_{A}=8r_{B} $
    3. $r_{A}=4r_{B} $
    4. $r_{A}=2\sqrt{2}r_{B} $
    5. $r_{A}=\frac{r_{B}}{4} $

  4. If $x^{2}-2xy+y^{2}=121$, $x-y=$

    1. $10$
    2. $11 $
    3. $12 $
    4. $13 $
    5. $14 $

  5. If c is equal to the sum b and twice of a, which of the following is the average of b and c?

    1. $a$
    2. $b $
    3. $c $
    4. $a+b $
    5. $b+c $

  6. $f(x)=4x+8$, $f(c+3)=8$, $f(c)=$

    1. $-8$
    2. $0 $
    3. $3 $
    4. $8 $
    5. $-3 $

  7. $5^{n}.125^{m}=78,125$, $n+3m=$

    1. $5$
    2. $ 6$
    3. $ 7$
    4. $ 8$
    5. $ 9$

  8. $\frac{3b^{2}}{a^{3}}=27a^{2}$

    1. $3a^{3}$
    2. $9a^{3} $
    3. $\frac{1}{9a^{3}} $
    4. $\frac{1}{a^{3}} $
    5. $\frac{1}{3a^{3}} $

  9. Which of the following statements must be true about the x and y coordinates that satisfy the equation $ay-ax=0$, $a \ne 0$, $x \ne 0$ ,$y \ne 0$

    1. $x>y$
    2. $xy=1 $
    3. $x=-y $
    4. $y>x $
    5. $x=y $

  10. What is the length of the side of a cube whose volume is 125 cubic units?

    1. $4$
    2. $ 5$
    3. $ 6$
    4. $ 7$
    5. $ 4.5$
    Answer Key
    1 D
    2 E
    3 D
    4 B
    5 D
    6 D
    7 C
    8 E
    9 E
    10 B

Wednesday, July 6, 2011

SAT Practice Questions - 6

  1. If $\frac{1}{2}$ of a number is 3, what is $\frac{1}{3}$ of the number?

    1. $1$
    2. $2 $
    3. $ 3$
    4. $ 6$
    5. $ 8$

  2. If $x=-1$, then $x^{5}+x^{4}+x^{3}+x^{2}-5=$

    1. $-10$
    2. $-6 $
    3. $-5$
    4. $-3$
    5. $-1$

  3. If $f(x)=2^{x}+7x$, then $f(4)=$

    1. $24$
    2. $ 36$
    3. $44 $
    4. $54 $
    5. $64 $

  4. If $x-3=y$, then $(y-x)^{3}=$

    1. $27$
    2. $54 $
    3. $ -54$
    4. $ -27$
    5. $ 81$

  5. If $a>b$, and $\frac{a}{b}>0$, which of the following is true?

    1. $a>0$
    2. $b>0$
    3. $ab>0$

    1. I only
    2. II only
    3. III only
    4. I and II only
    5. I and III only

  6. Which of the following is equal to $(\frac{x^{-7}y^{-5}}{x^{-3}y^{3}})^{-2}$

    1. $x^{8}y^{16}$
    2. $\frac{x^{8}}{y^{16}} $
    3. $\frac{y^{16}}{x^{8}} $
    4. $x^{4}y^{8}$
    5. $x^{8}y^{8}$


  7. What is the slope of the line passing through the points (-1,7) and (3,5)?

    1. $\frac{1}{2}$
    2. $-2$
    3. $-\frac{1}{2} $
    4. $1$
    5. $2$

  8. The symbol $\otimes$ represents a binary operation defined as $a \otimes b=3^{a}+2^{b}$, what is the value of $(-2)\otimes (-3)$

    1. $-\frac{17}{72}$
    2. $\frac{72}{17} $
    3. $-72 $
    4. $ 72$
    5. $ \frac{17}{72}$

  9. If $\sqrt{\frac{49}{x}}=\frac{7}{3}$

    1. $6$
    2. $9$
    3. $25$
    4. $49$
    5. $147$

  10. A bike that originally sold for $150 \$$ was on sale for $120 \$$. What was the rate of discount?

    1. $15 \%$
    2. $21 \%$
    3. $20 \%$
    4. $25 \% $
    5. $30 \% $

    Answer Key
    1 B
    2 C
    3 C
    4 D
    5 C
    6 A
    7 C
    8 E
    9 B
    10 C

SAT Practice Questions - 5

  1. If $ 0.10 < x < 0.12$, which of the following could be a value of $x$?

    1. $9 \%$
    2. $10 \% $
    3. $11 \% $
    4. $12 \% $
    5. $13 \% $

  2. If $\frac{xyz}{t}=w$ and $x$ and $t$ are doubled, what happens to the value of w


    1. The value of $w$ is two times smaller.
    2. The value of $w$ is halved.
    3. The value of $w$ is four times greater.
    4. The value of $w$ is doubled
    5. The value of $w$ remains the same.

  3. What is the tenth term of the pattern below?
    $\frac{3}{2}$, $\frac{9}{4}$, $\frac{27}{8}$, $\frac{81}{16}$,...

    1. $\frac{3}{2^{10}}$
    2. $\frac{30}{20}$
    3. $(\frac{3}{2})^{10}$
    4. $\frac{3^{10}}{2}$
    5. $\frac{300}{200}$

  4. If $a > 0$ and $b < 0$, which of the following is always negative?

    1. $-ab$
    2. $a+b$
    3. $|a|-|b|$
    4. $\frac{a}{b}$
    5. $b^{a}$

  5. Which of the following number pairs is in the ratio $3:7$?

    1. $\frac{1}{3}$,$\frac{1}{7}$
    2. $\frac{1}{7}$,$\frac{1}{3}$
    3. $\frac{1}{7}$,$\frac{3}{7}$
    4. $7$,$\frac{1}{3}$
    5. $1$,$\frac{1}{7}$

  6. If $x=-\frac{1}{4}$, then $(-x)^{-3}+(\frac{1}{x})^{2}=$

    1. $-80$
    2. $-64$
    3. $16 $
    4. $64$
    5. $80$

  7. For which of the following values of $x$ is the relationship $x < x^{2} < x^{3}$ true?

    1. $-3$
    2. $-\frac{2}{3}$
    3. $0$
    4. $\frac{2}{3} $
    5. $3$

  8. $x^{2}+2xy+y^{2}=169$, $-|-(x+y)|=$

  9. How many distincts factors does 900 have?

    1. $2$
    2. $ 3$
    3. $ 4$
    4. $ 5$
    5. more than $5$

  10. If $x=-\frac{1}{7}$, then which of the following is always positive for $n > 0$?

    1. $x^{n}$
    2. $n^{x}$
    3. $nx$
    4. $n-x$
    5. $\frac{x}{n} $


    Answer Key
    1 C
    2 E
    3 C
    4 D
    5 B
    6 E
    7 3
    8 -13
    9 A
    10 B

Tuesday, July 5, 2011

SAT Practice Questions - 4

  1. For how many positive integers, $n$, is true that $n^{2} \leq 3n$

    1. $2$
    2. $3$
    3. $4$
    4. $5$
    5. more than 5

  2. If $a^{4}=16$, then $3^{a}$

    1. $3$
    2. $9$
    3. $16$
    4. $27$
    5. $81$

  3. $\sqrt{20}\sqrt{5}=$

    1. $2\sqrt{5}$
    2. $10$
    3. $4\sqrt{5}$
    4. $5\sqrt{10}$
    5. $10\sqrt{5}$


  4. The sum of three positive consecutive even integers is x.
    What is the value of the middle of the three integers?

    1. $\frac{x}{3}-1$
    2. $\frac{x}{3}+2$
    3. $3x$
    4. $\frac{x-2}{3}$
    5. $\frac{x}{3}$

  5. What is the average of $5^{10}$, $5^{20}$, $5^{30}$, $5^{40}$ and $5^{50}$?

    1. $5^{9}+5^{19}+5^{29}+5^{39}+5^{49}$
    2. $5^{30}$
    3. $5^{149}$
    4. $150$
    5. $5^{29}$

  6. Which of the following is equal to $(5^{6} \times 5^{9})^{10}$?

    1. $25^{150}$
    2. $25^{540}$
    3. $5^{540}$
    4. $5^{150}$
    5. $5^{15}$

  7. What is the value of $3^{\frac{1}{3}} \times 3^{\frac{2}{3}} \times 3^{\frac{3}{3}}$?

    1. $3$
    2. $9$
    3. $27$
    4. $30$
    5. $81$

  8. How many integers satisfy the inequality $|x| < 2 \pi$.

    1. $0$


    2. $3$


    3. $4$


    4. $7$


    5. More than $7$


  9. What is the average of $5^{a} \times 5^{b}=5^{300}$

    1. $50$
    2. $100$
    3. $150$
    4. $200$
    5. $250$

  10. If $5^{a}5^{b}=\frac{5^{c}}{5^{d}}$, what is d in terms of $a$, $b$ and $c$?

    1. $\frac{c}{a+b}$
    2. $c+ab$
    3. $c-a-b$
    4. $c+a-b$
    5. $\frac{b}{ac}$
    Answer Key
    1 B
    2 B
    3 B
    4 E
    5 A
    6 D
    7 B
    8 E
    9 C
    10 C

SAT Practice Questions - 3 & Answer Key

  1. Which of the following is equivalent to $5^{9}$

    1. $5^{4}+5^{4}+5^{1}$
    2. $5^{2} \times 5^{4} \times 5^{3}$
    3. $\frac{10^{9}}{2^{10}}$
    4. $(5^{4})^{5}$
    5. $\frac{5^{5}}{5^{4}}$

  2. Which of the following is equivalent to $\sqrt{289}$

    1. $14$
    2. $15$
    3. $16$
    4. $17$
    5. $18$

  3. Which of the following is a perfect square?

    1. $120$
    2. $121$
    3. $122$
    4. $123$
    5. $124$

  4. Which of the following is equivalent to $3\sqrt{10}$

    1. $3\sqrt{5} \times \sqrt{5}$
    2. $\sqrt{90}$
    3. $3\sqrt{5} + 3\sqrt{2}$
    4. $3\sqrt{5}+3\sqrt{5}$
    5. $\frac{3\sqrt{2}}{\sqrt{5}}$

  5. Which of the following is equivalent to $10^{\frac{2}{5}}$

    1. $\sqrt[5]{5}$
    2. $\sqrt[5]{10}$
    3. $\sqrt[5]{20}$
    4. $\sqrt[5]{100}$
    5. $\sqrt[5]{1000}$

  6. Which of the following fractions is equivalent to $\frac{3}{6} \times \frac{2}{5}$?

    1. $\frac{6}{30}$
    2. $\frac{5}{30}$
    3. $\frac{5}{11}$
    4. $\frac{15}{12}$
    5. $\frac{9}{30}$

  7. Which of the following expressions is equivalent to $\frac{7}{6} \div \frac{5}{2}$?

    1. $\frac{7}{30}+\frac{2}{30}$
    2. $\frac{9}{6}+\frac{9}{5}$
    3. $\frac{7}{8}+\frac{5}{8}$
    4. $\frac{7}{6}+\frac{2}{5}$
    5. $\frac{1}{7}+\frac{2}{35}$

  8. If $3^{x}=729$, what is $x^{3}$?

  9. What is the value of $||4|-|-7||$

    1. $-11$
    2. $-3$
    3. $0$
    4. $3$
    5. $11$

  10. What is the value of $(\sqrt{3}+\sqrt{5})^{2}-(\sqrt{8})^{2}$

    1. $2\sqrt{15}$
    2. $\sqrt{15}$
    3. $0$
    4. $15$
    5. $30$

    Answer Key
    1 B
    2 D
    3 B
    4 B
    5 D
    6 A
    7 E
    8 125
    9 D
    10 A

Monday, July 4, 2011

SAT Practice Questions - 2

  1. Solve $15x-32=18-10x$

    1. $-14$
    2. $10$
    3. $14$
    4. $2$
    5. $50$

  2. Solve $\frac{x}{8}=\frac{x-2}{4}$

    1. $12$
    2. $4$
    3. $6$
    4. $-\frac{1}{2}$
    5. $-6$

  3. Which of the following are the factors of $t^{2}+8t+16$

    1. $(t-4)(t-4)$
    2. $(t-8)(t-2)$
    3. $(t+8)(t+2)$
    4. $(t+1)(t+16)$
    5. $(t+4)(t+4)$

  4. Solve for a in term of b, if $6a+12b=24$

    1. $24-12b$
    2. $2-\frac{1}{2}b$
    3. $4-2b$
    4. $24-18b$
    5. $2b-4$

  5. If $ax+2b=5c-dx$, what does x equal in terms of a, b, c, and d?

    1. $5c-d-2b-a$
    2. $a-d$
    3. $(5c-2b)(a-d)$
    4. $\frac{5c-d-2b}{a}$
    5. $\frac{5c-2b}{a-d}$

  6. If $(z-9)(z+3)=0$, what are the two possible values of z?

    1. $z=-9$ abd $z=3$
    2. $z=9$ abd $z=0$
    3. $z=0$ abd $z=-3$
    4. $z=9$ abd $z=-3$
    5. $z=-12$ abd $z=12$

  7. If $z^{2}-6z=16$, which of the following could be a value of $z^{2}+6z$?

    1. $-8$
    2. $112$
    3. $110$
    4. $18$
    5. $108$

  8. If $3\sqrt{ a}-10=2$, what is the value of a?

    1. $16$
    2. $4$
    3. $32$
    4. $64$
    5. $12$

  9. Given $\frac{(x+6)(x^{2}-2x-3)}{x^{2}+3x-18}=10$, find the value of x.

    1. $18$
    2. $4$
    3. $12$
    4. $9$
    5. $12$

  10. Solve the equation $\frac{5x}{8}-\frac{3x}{5}=2$.

    1. $40$
    2. $80$
    3. $160$
    4. $-80$
    5. $20$

    Answer Key
    1 D
    2 B
    3 E
    4 C
    5 E
    6 D
    7 B
    8 A
    9 D
    10 B

Saturday, July 2, 2011

CLEP Precalculus Practice Questions -1

    1. Evaluate the expression: $1000(2^{-1.5})$

      1. $2828,427$
      2. $2000.00$
      3. $353.55$
      4. $3000$
      5. $350.50$

    2. Evaluate the expression: $\log_{49}7$

      1. $\frac{1}{4}$
      2. $\frac{1}{2}$
      3. $\frac{2}{5}$
      4. $\frac{1}{49}$
      5. $7$

    3. Place into standard form: $(5+i)-(7-7i)$

      1. $-2+8i$
      2. $2+8i$
      3. $12+8i$
      4. $-2+6i$
      5. $2-8i$

    4. Find the domaine of the function: $f(x)=\sqrt{-6x+12}$

      1. $x \geq 2$
      2. $x \geq 3$
      3. $x \leq -2$
      4. $x \leq -1$
      5. $x \leq 2$

    5. What is the value of: $3\ln e^{6}$

      1. $6$
      2. $18$
      3. $9$
      4. $12$
      5. $3$

    6. What is the value of: $\csc (150 deg)$

      1. $0$
      2. $1$
      3. $-1$
      4. $-2$
      5. $2$

    7. Solve the equation: $x^{2}-10x+50=0$

      1. $5+5i$ or $5-5i$
      2. $2+5i$ or $2-5i$
      3. $4+5i$ or $4-5i$
      4. $1+5i$ or $1-5i$
      5. $5+i$ or $5-i$

    8. What is the value of $x$: $\log_{10}x=-3$

      1. $0.01$
      2. $0.001$
      3. $0.1$
      4. $1$
      5. $10$

    9. Factor the expression: $x^{2}-3ix-2$

      1. $(x+i)(x+2i)$
      2. $(x+i)(x-2i)$
      3. $(x-i)(x-2i)$
      4. $(-x-i)(x-2i)$
      5. $(x-1)(x-2)$

    10. Identify the horizontal and vertical asymptotes for: $\frac{5x^{2}}{x^{2}-9}$

      1. $y=5$, $x=-3$, $x=3$
      2. $y=-5$, $x=-3$
      3. $y=5$, $x=3$
      4. $y=5$, $x=-3$
      5. $y=-5$, $x=3$, $x=-3$

    11. Answer Key
      1 C
      2 B
      3 A
      4 E
      5 B
      6 E
      7 A
      8 B
      9 C
      10 A

Friday, July 1, 2011

CLEP College Algebra Practice Questions -- Functions and their properties

  1. If $f(x)=-x^{3}+2x+1$ what is $f(-3x)$

    1. $27x^{3}-6x+1$
    2. $-27x^{3}-6x+1 $
    3. $-27x^{3}+6x+1 $
    4. $27x^{3}-6x-1 $
    5. $-3x^{3}-6x+1 $

  2. If $f(x)=9x+3$ then $f^{-1}(x)=$

    1. $\frac{1}{9}x-\frac{1}{3}$
    2. $\frac{1}{3}+\frac{1}{9} $
    3. $9x-3 $
    4. $\frac{1}{3}x+1 $
    5. $x-\frac{1}{9} $

  3. If $f(x,y)=\frac{x \log x}{y \log y}$ then $f(8,2)=$

    1. $4$
    2. $24 $
    3. $ \frac{3}{2}$
    4. $\log 2 $
    5. $12 $

  4. $\log_{5}(\frac{1}{125})$

    1. $\frac{1}{3}$
    2. $-\frac{1}{3} $
    3. $5 $
    4. $3 $
    5. $-3 $

  5. The function $f$ is defined by $f(x)=\frac{1}{1-x}$. For what values of $x$ is $f(f(x))$ undefined?

    1. $\{0\}$
    2. $\{1\} $
    3. $\{-1,2\} $
    4. $\{0,1\} $
    5. $\{-1,0\} $



  6. If $f(x)=\frac{7x-5}{2}$, find the solution set for $f(x)>3x$

    1. $\{x/ x>5 \}$
    2. $\{x/ x<5 \} $
    3. $\{ x/ x>3 \} $
    4. $\{ x/ x \leq -3 \} $
    5. None of the above

  7. If $f(x)=3x+7$ and $g(x)=2x-1$, what is $f(g(1))$?


  8. Find the equation for the line passing through $(4,2)$ and $(-1,3)$

    1. $5y-x=14$
    2. $5y+x=-14$
    3. $-5y+x=14$
    4. $y+5x=14$
    5. $5y+x=14$

  9. Solve $2^{7x}=4^{2x-1}$

    1. $\frac{2}{3}$
    2. $\frac{3}{2}$
    3. $-\frac{2}{3}$
    4. $3$
    5. $\frac{2}{3}$

  10. Find $\log_{3} 81$
Answer Key
1 A
2 A
3 E
4 E
5 D
6 A
7 10
8 E
9 C
10 4