Processing math: 100%
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. math exams: July 2011

Wednesday, July 27, 2011

GRE Practice Questions -3

  1. If m=\frac{\sqrt{5}-3}{\sqrt{2}+1}, then for which one of the following equals m-3

    1. \sqrt{10}-3\sqrt{2}-\sqrt{5}+3
    2. \sqrt{10}-3\sqrt{2}-\sqrt{5}
    3. \sqrt{10}-3\sqrt{2}+\sqrt{5}
    4. \sqrt{10}-3\sqrt{2}-\sqrt{5}-6
    5. \sqrt{10}+3\sqrt{2}-\sqrt{3}

  2. If y < 0 and x is 7 more than the square of y, which one of the following expresses y in terms of x?

    1. y=-\sqrt{x-7}
    2. y=\sqrt{x-7}
    3. y=\sqrt{x+7}
    4. y=\sqrt{x^{2}-7}
    5. y=-\sqrt{x^{2}-7}
  3. If \sqrt[m]{125}=5^{3m} and 4^{m} > \frac{1}{2}, then what is the value of m?

    1. -1
    2. -\frac{1}{5}
    3. 0
    4. \frac{1}{5}
    5. 1
  4. Column A Column B
    x^{2}(x^{5})^{2} (x^{4})^{3}

  5. Column A Column B
    17^{\frac{1}{x}-\frac{1}{y}} 0 < x < y 17^{x-y}


  6. Answer Key
    1 A
    2 B
    3 E
    4 C
    5 A

Monday, July 25, 2011

GMAT Practice Questions -5

  1. If x \ne 3, then \frac{3x^{2}+18x+27}{(x+3)^{2}}

    1. 1
    2. 3
    3. 9
    4. 27
    5. 81

  2. If \frac{x+5}{x-5}=y, what is the value of x in terms of y?

    1. -5-y
    2. \frac{5}{y}
    3. \sqrt{y^{2}+5}
    4. \frac{-5y-5}{1-y}
    5. \frac{-5y+5}{1-y}

  3. \frac{1-\frac{1}{3}}{2}

    1. 3
    2. \frac{2}{3}
    3. \frac{3}{2}
    4. \frac{1}{3}
    5. \frac{1}{5}

  4. \frac{\frac{1}{x}}{\frac{1}{y}-z}

    1. \frac{xy}{y-xyz}
    2. \frac{1}{xy-xyz}
    3. \frac{y}{xyz+x}
    4. \frac{y}{x-xyz}
    5. \frac{x-xyz}{y}

  5. The average of x, \frac{1}{x} and \frac{1}{x^{2}} is

    1. \frac{1+x^{2}}{3x}
    2. \frac{1+x^{2}+x^{3}}{3x^{2}}
    3. \frac{1+x+x^{2}}{3x^{2}}
    4. \frac{1-x+x^{2}}{3x}
    5. \frac{1+x^{2}+x^{3}}{3}

  6. \frac{1}{5} of .01 percent equals :

    1. .00002
    2. .0002
    3. .002
    4. .02
    5. .2

  7. \frac{2^{a+1}-2^{a-1}}{2^{a+1}+2^{a-1}}

    1. \frac{1}{4}
    2. \frac{3}{5}
    3. 2
    4. \frac{1}{2}
    5. \frac{5}{3}

  8. If x is \frac{50}{51} of \frac{51}{52} and y=\frac{50}{51}, then \frac{x}{y}=

    1. \frac{50}{51}
    2. \frac{50}{52}
    3. \frac{51}{52}
    4. \frac{2550}{2500}
    5. \frac{2601}{2704}

  9. The decimal .01 is how many times greater than the decimal (.0001)^{4}

    1. 10^{6}
    2. 10^{8}
    3. 10^{10}
    4. 10^{12}
    5. 10^{14}

  10. Let a=.79, b=\sqrt{.79} and c=(.79)^{2}, then which of the following is true?

    1. a < b < c

    2. c < b < a

    3. a < b < c

    4. c < a < b

    5. b < a < c


    Answer Key
    1 B
    2 D
    3 D
    4 D
    5 C
    6 A
    7 B
    8 C
    9 E
    10 D

Friday, July 22, 2011

GMAT Practice Questions -4

  1. If n is a positive integer and (n+3)(n+5) is odd, then (n+4)(n+6) must be a multiple of which one of the following?

    1. 3
    2. 5
    3. 7
    4. 8
    5. 16

  2. The number of prime numbers divisible par 2 plus the number of prime numbers divisible by 5 is

    1. 0
    2. 1
    3. 2
    4. 3
    5. 4

  3. If 13x+17=0, then -13|x| equals which one of the following?

    1. -\frac{17}{13}
    2. \frac{17}{13}
    3. 17
    4. 13
    5. -17

  4. Which one of the following is divisible by both 2 and 3?

    1. 1007
    2. 3096
    3. 1616
    4. 2306
    5. 1791

  5. Which one of the following equals the product of exactly two prime numbers?

    1. 13.6
    2. 11.9
    3. 17.21
    4. 19.51
    5. 17.23

  6. If m, n, and p are different prime numbers, then the least common multiple of the the three numbers must equal which one of the following?

    1. mn(p+n)
    2. m+n+p
    3. m+np
    4. m+n-p
    5. pnm

  7. Each of the positive integer a and b ends with the digit 3. With which one of the following numbers does a-b ends?

    1. 0
    2. 1
    3. 2
    4. 3
    5. 4

  8. If p-10 is divisible by 4, then which one of the following must be divisible by 4?

    1. p
    2. p-2
    3. p-6
    4. p+3
    5. p+8

Wednesday, July 20, 2011

GMAT Practice Questions -3

  1. If a+5a is 6 less than b+5b, then a-b=

    1. 6
    2. -1
    3. -\frac{1}{6}
    4. \frac{1}{6}
    5. -6

  2. If w \ne 0, w=5x=\sqrt{5}y, what is the value of w-x in terms of y?

    1. 5y
    2. \frac{\sqrt{5}}{5}y
    3. \sqrt{5y}
    4. \frac{5}{4\sqrt{5}}y
    5. \frac{4\sqrt{5}}{5}y

  3. If (a-1)(a+5)(a-7)=0, and a < 0, then a=


    1. -1

    2. -7

    3. -5

    4. -3

    5. -2

  4. A aytem of equations is as shown below
    x-l=8
    x+m=7
    x-p=6
    x+q=5
    What is the value of l+m+p+q?

    1. -4
    2. -3
    3. -2
    4. -1
    5. 0

  5. If \frac{a^{2}-25}{20a}=\frac{a-5}{a+5}, a=5 \ne 0, and a \ne 0, then a=

    1. 1
    2. 3
    3. 5
    4. 20
    5. 25

  6. If a, b, c,and d are not equal to 0 or 1, and if a^{x}=b, b^{y}=c, c^{z}=d and d^{t}=a, then xyzt=

    1. 0
    2. 1
    3. abc
    4. abcd
    5. a^{b^{c^{d}}}

  7. If (x-3y)(x+3y)=-9 and (3x-y)(3x+y)=-1, then \frac{x^{2}+y^{2}}{x^{2}-y^{2}}=

    1. -2
    2. -1
    3. 0
    4. 1
    5. 2

  8. If p-q=5 and pq=11, then is the value of \frac{1}{p^{2}}+\frac{1}{q^{2}}?

    1. \frac{25}{121}
    2. -\frac{47}{121}
    3. \frac{5}{11}
    4. -\frac{5}{11}
    5. \frac{47}{121}

Sunday, July 17, 2011

GMAT Practice Questions -2

  1. If n is an integer, which of the following CANNOT be an integer?

    1. \frac{n+2}{2}
    2. \sqrt{n+1}
    3. \frac{3}{n+2}
    4. \sqrt{n^{2}+5}
    5. \sqrt{\frac{1}{n^{2}+3}}

  2. If n is an integer, which one of the following is an odd integer?

    1. n^{2}
    2. \frac{n+3}{2}
    3. -2n-8
    4. n^{2}-3
    5. \sqrt{n^{4}+1}

  3. If x, y, z and t are positive integers such that x < y < z < t and x+y+z+t=10, then what is the value of t?


    1. 2

    2. 3

    3. 4

    4. 5

    5. 6

  4. The remainder when the positive integer m is divided by n is r. What is the remainder when 3m is divided by 3n?

    1. r
    2. 3r
    3. 3n
    4. m-3n
    5. 3(m-nr)

  5. If (x-5)(x+4)=(x-4)(x+5), then x=

    1. -5
    2. -4
    3. 0
    4. 4
    5. 5

  6. If (3x-1)^{2}=121, then which one of the following COULD equal x?

    1. -4
    2. \frac{10}{3}
    3. \frac{13}{3}
    4. -\frac{10}{3}
    5. \frac{17}{3}

  7. (The average of 5 consecutive integers starting from 17)-(The average of 6 consecutive integers starting from 17)=

    1. -\frac{1}{8}
    2. -\frac{1}{2}
    3. 0
    4. \frac{1}{8}
    5. \frac{1}{2}

  8. If n^{3}+n^{2}-n-2=-1, then which one of the following could be the value of n

    1. 0
    2. 1
    3. 2
    4. 3
    5. 4

  9. Solve the the system of equations given?
    x+3y=8
    x+2y=5

    1. -1,4
    2. 1,3
    3. 2,3
    4. 1,-3
    5. -1,3

  10. If (a-b)(a+b)=7 \times 3 then a and b equals respectively?

    1. -5,-2
    2. 5,3
    3. 7,2
    4. 9,2
    5. -3,-10

Monday, July 11, 2011

GRE Practice Questions -2

  1. 4x+3=-1, then x-1=

    1. 2
    2. 1
    3. 0
    4. -1
    5. -2

  2. \frac{7}{\frac{1}{6}+1}

    1. -6
    2. 7
    3. \frac{1}{6}
    4. \frac{1}{6}
    5. 6

  3. 32^{17}=2^{3a+4}, then a=

    1. 3
    2. 9
    3. 27
    4. 81
    5. 243

  4. a=5b, b^{2}=3c and 5c=d, then \frac{a^{2}}{d}=

    1. 15
    2. \frac{3}{5}
    3. \frac{15}{3}
    4. 9
    5. \frac{1}{5}

  5. (x-3)(x+2)=(x+4)(x-5)

    1. 7
    2. 14
    3. -7
    4. 3
    5. There is no solution

  6. \frac{1}{2} of 0.02 percent equals

    1. 1
    2. 0.1
    3. 0.01
    4. 0.001
    5. 0.0001

  7. If the average of 2x, 3x and 5x is 3, then x=

    1. \frac{10}{9}
    2. 9
    3. 10
    4. \frac{9}{10}
    5. -\frac{9}{10}

  8. -2^{5}-(1-x^{2})^{2}

    1. -x^{4}+2x^{2}+31
    2. -x^{4}+2x^{2}-31
    3. -x^{4}+2x^{2}+33
    4. -x^{4}-2x^{2}+33
    5. -x^{4}+2x^{2}-33

  9. A truckmaker sells six models of cars, and each model comes with 7 options.
    How many different types of trucks does the truckmaker sell?

    1. 20
    2. 25
    3. 32
    4. 42
    5. 52

  10. If a, b, and c are consecutive integers and a < b < c, which of the following must be true?


    1. b^{3} is a prime number

    2. \frac{a+c}{2}=b

    3. \frac{c-a}{2}=1 is odd

    4. \frac{ab}{3}

    5. c-a=b

GMAT Practice Questions -1

  1. If C=\frac{7r}{3s} and s \ne 0, what is the value of C?

    1. r=6s
    2. r=\frac{3}{7}

  2. If 7a=5b and ab \ne 0, what is the ratio of \frac{a}{5} to \frac{b}{7}

    1. \frac{49}{25}
    2. \frac{7}{5}
    3. \frac{5}{7}
    4. 1
    5. \frac{25}{49}

  3. If the diameter of a circle is 18, then the area of the circle is

    1. 9 \pi
    2. 18 \pi
    3. 36 \pi
    4. 81 \pi
    5. 324 \pi

  4. For any numbers a and b, a*b=ab(5-b). If a and a*b both represent positive numbers, which of the following could be a value of b?

    1. -7
    2. -1
    3. 3
    4. 6
    5. 9

  5. \sqrt{7^{2}+5^{2}-10}

    1. 4\sqrt{2}
    2. 6
    3. 8
    4. 10
    5. \sqrt{117}

  6. What is the perimeter of a square with area \frac{7p}{4}?

    1. \frac{7p}{4}
    2. \frac{7p^{2}}{4}
    3. 7p
    4. 7p^{2}
    5. \frac{4p}{7}

  7. \sqrt{169}+\sqrt{256}+\sqrt{361}=

    1. 19
    2. 29
    3. 36
    4. 46
    5. 48

  8. If 45 percent of 500 is 50 percent of x, then x=

    1. 350
    2. 400
    3. 450
    4. 600
    5. 1,200

  9. (5^{3}-1)(5^{3}+1)(5^{6}+1)(5^{12}+1)

    1. (5^{24}-1)
    2. (5^{24}+1)
    3. (5^{48}-1)
    4. (5^{96}+1)
    5. 5^{3}(5^{24}-1)

  10. How many minutes does it take to travel 160 miles at 200 miles per hour?

    1. 13
    2. 16
    3. 45
    4. 48
    5. 52

Sunday, July 10, 2011

GRE Practice Questions -1

  1. If 5x+7=11, then 5x-4=0

    1. 11
    2. 7
    3. 5
    4. 1
    5. 0

  2. The smallest prime number greter than 50 is

    1. 51
    2. 52
    3. 53
    4. 54
    5. 55

  3. \frac{6}{\frac{1}{5}+1}

    1. 1
    2. \frac{1}{5}
    3. \frac{1}{6}
    4. 5
    5. 6

  4. \sqrt{(120-39)(68+13)}

    1. 2
    2. 20
    3. 40
    4. 80
    5. 81

  5. (9^{y})^{3}

    1. 9^{y+3}
    2. 9^{6y}
    3. 3^{3y^{2}}
    4. 9^{y^{3}}
    5. 3^{6y}



  6. 27^{13}=3^{a}, then a=

    1. 39
    2. 29
    3. 19
    4. 13
    5. 9



  7. x-y=h, then 5x^{2}-10xy+5y^{2}=

    1. 5h^{2}
    2. 10h
    3. h^{2}
    4. 5h
    5. 10h^{2}



  8. 27x^{2}-12

    1. 3(3x-2)(3x+2)
    2. 3(9x-2)(9x+2)
    3. 9(3x-2)(3x+2)
    4. 3(3x-2)(9x+2)
    5. (9x-2)(9x+2)

  9. If the average of 3x and 9x is 6, then x=

    1. 20
    2. 19
    3. 9
    4. 3
    5. 1

  10. What percent of 5x is 10y if x=2y?

    1. 20 \%
    2. 30 \%
    3. 40 \%
    4. 45 \%
    5. 50 \%

Friday, July 8, 2011

SAT Practice Questions - 7

  1. If 3x+7=5x+1

    1. 2.5
    2. 3.5
    3. 4
    4. 3
    5. 4.5

  2. What is the next term in the sequence: 6, 3, 10, 7, 14, 11, ...?

    1. 19
    2. 15
    3. 6
    4. 17
    5. 18

  3. The area of the basis of Cylinder A is 8 times the area of the basis of Cylinder B. What is the radius of Cylinder A in terms of the radius of Cylinder B?

    1. r_{A}=\frac{r_{B}}{8}
    2. r_{A}=8r_{B}
    3. r_{A}=4r_{B}
    4. r_{A}=2\sqrt{2}r_{B}
    5. r_{A}=\frac{r_{B}}{4}

  4. If x^{2}-2xy+y^{2}=121, x-y=

    1. 10
    2. 11
    3. 12
    4. 13
    5. 14

  5. If c is equal to the sum b and twice of a, which of the following is the average of b and c?

    1. a
    2. b
    3. c
    4. a+b
    5. b+c

  6. f(x)=4x+8, f(c+3)=8, f(c)=

    1. -8
    2. 0
    3. 3
    4. 8
    5. -3

  7. 5^{n}.125^{m}=78,125, n+3m=

    1. 5
    2. 6
    3. 7
    4. 8
    5. 9

  8. \frac{3b^{2}}{a^{3}}=27a^{2}

    1. 3a^{3}
    2. 9a^{3}
    3. \frac{1}{9a^{3}}
    4. \frac{1}{a^{3}}
    5. \frac{1}{3a^{3}}

  9. Which of the following statements must be true about the x and y coordinates that satisfy the equation ay-ax=0, a \ne 0, x \ne 0 ,y \ne 0

    1. x>y
    2. xy=1
    3. x=-y
    4. y>x
    5. x=y

  10. What is the length of the side of a cube whose volume is 125 cubic units?

    1. 4
    2. 5
    3. 6
    4. 7
    5. 4.5
    Answer Key
    1 D
    2 E
    3 D
    4 B
    5 D
    6 D
    7 C
    8 E
    9 E
    10 B

Wednesday, July 6, 2011

SAT Practice Questions - 6

  1. If \frac{1}{2} of a number is 3, what is \frac{1}{3} of the number?

    1. 1
    2. 2
    3. 3
    4. 6
    5. 8

  2. If x=-1, then x^{5}+x^{4}+x^{3}+x^{2}-5=

    1. -10
    2. -6
    3. -5
    4. -3
    5. -1

  3. If f(x)=2^{x}+7x, then f(4)=

    1. 24
    2. 36
    3. 44
    4. 54
    5. 64

  4. If x-3=y, then (y-x)^{3}=

    1. 27
    2. 54
    3. -54
    4. -27
    5. 81

  5. If a>b, and \frac{a}{b}>0, which of the following is true?

    1. a>0
    2. b>0
    3. ab>0

    1. I only
    2. II only
    3. III only
    4. I and II only
    5. I and III only

  6. Which of the following is equal to (\frac{x^{-7}y^{-5}}{x^{-3}y^{3}})^{-2}

    1. x^{8}y^{16}
    2. \frac{x^{8}}{y^{16}}
    3. \frac{y^{16}}{x^{8}}
    4. x^{4}y^{8}
    5. x^{8}y^{8}


  7. What is the slope of the line passing through the points (-1,7) and (3,5)?

    1. \frac{1}{2}
    2. -2
    3. -\frac{1}{2}
    4. 1
    5. 2

  8. The symbol \otimes represents a binary operation defined as a \otimes b=3^{a}+2^{b}, what is the value of (-2)\otimes (-3)

    1. -\frac{17}{72}
    2. \frac{72}{17}
    3. -72
    4. 72
    5. \frac{17}{72}

  9. If \sqrt{\frac{49}{x}}=\frac{7}{3}

    1. 6
    2. 9
    3. 25
    4. 49
    5. 147

  10. A bike that originally sold for 150 \$ was on sale for 120 \$. What was the rate of discount?

    1. 15 \%
    2. 21 \%
    3. 20 \%
    4. 25 \%
    5. 30 \%

    Answer Key
    1 B
    2 C
    3 C
    4 D
    5 C
    6 A
    7 C
    8 E
    9 B
    10 C

SAT Practice Questions - 5

  1. If 0.10 < x < 0.12, which of the following could be a value of x?

    1. 9 \%
    2. 10 \%
    3. 11 \%
    4. 12 \%
    5. 13 \%

  2. If \frac{xyz}{t}=w and x and t are doubled, what happens to the value of w


    1. The value of w is two times smaller.
    2. The value of w is halved.
    3. The value of w is four times greater.
    4. The value of w is doubled
    5. The value of w remains the same.

  3. What is the tenth term of the pattern below?
    \frac{3}{2}, \frac{9}{4}, \frac{27}{8}, \frac{81}{16},...

    1. \frac{3}{2^{10}}
    2. \frac{30}{20}
    3. (\frac{3}{2})^{10}
    4. \frac{3^{10}}{2}
    5. \frac{300}{200}

  4. If a > 0 and b < 0, which of the following is always negative?

    1. -ab
    2. a+b
    3. |a|-|b|
    4. \frac{a}{b}
    5. b^{a}

  5. Which of the following number pairs is in the ratio 3:7?

    1. \frac{1}{3},\frac{1}{7}
    2. \frac{1}{7},\frac{1}{3}
    3. \frac{1}{7},\frac{3}{7}
    4. 7,\frac{1}{3}
    5. 1,\frac{1}{7}

  6. If x=-\frac{1}{4}, then (-x)^{-3}+(\frac{1}{x})^{2}=

    1. -80
    2. -64
    3. 16
    4. 64
    5. 80

  7. For which of the following values of x is the relationship x < x^{2} < x^{3} true?

    1. -3
    2. -\frac{2}{3}
    3. 0
    4. \frac{2}{3}
    5. 3

  8. x^{2}+2xy+y^{2}=169, -|-(x+y)|=

  9. How many distincts factors does 900 have?

    1. 2
    2. 3
    3. 4
    4. 5
    5. more than 5

  10. If x=-\frac{1}{7}, then which of the following is always positive for n > 0?

    1. x^{n}
    2. n^{x}
    3. nx
    4. n-x
    5. \frac{x}{n}


    Answer Key
    1 C
    2 E
    3 C
    4 D
    5 B
    6 E
    7 3
    8 -13
    9 A
    10 B

Tuesday, July 5, 2011

SAT Practice Questions - 4

  1. For how many positive integers, n, is true that n^{2} \leq 3n

    1. 2
    2. 3
    3. 4
    4. 5
    5. more than 5

  2. If a^{4}=16, then 3^{a}

    1. 3
    2. 9
    3. 16
    4. 27
    5. 81

  3. \sqrt{20}\sqrt{5}=

    1. 2\sqrt{5}
    2. 10
    3. 4\sqrt{5}
    4. 5\sqrt{10}
    5. 10\sqrt{5}


  4. The sum of three positive consecutive even integers is x.
    What is the value of the middle of the three integers?

    1. \frac{x}{3}-1
    2. \frac{x}{3}+2
    3. 3x
    4. \frac{x-2}{3}
    5. \frac{x}{3}

  5. What is the average of 5^{10}, 5^{20}, 5^{30}, 5^{40} and 5^{50}?

    1. 5^{9}+5^{19}+5^{29}+5^{39}+5^{49}
    2. 5^{30}
    3. 5^{149}
    4. 150
    5. 5^{29}

  6. Which of the following is equal to (5^{6} \times 5^{9})^{10}?

    1. 25^{150}
    2. 25^{540}
    3. 5^{540}
    4. 5^{150}
    5. 5^{15}

  7. What is the value of 3^{\frac{1}{3}} \times 3^{\frac{2}{3}} \times 3^{\frac{3}{3}}?

    1. 3
    2. 9
    3. 27
    4. 30
    5. 81

  8. How many integers satisfy the inequality |x| < 2 \pi.

    1. 0


    2. 3


    3. 4


    4. 7


    5. More than 7


  9. What is the average of 5^{a} \times 5^{b}=5^{300}

    1. 50
    2. 100
    3. 150
    4. 200
    5. 250

  10. If 5^{a}5^{b}=\frac{5^{c}}{5^{d}}, what is d in terms of a, b and c?

    1. \frac{c}{a+b}
    2. c+ab
    3. c-a-b
    4. c+a-b
    5. \frac{b}{ac}
    Answer Key
    1 B
    2 B
    3 B
    4 E
    5 A
    6 D
    7 B
    8 E
    9 C
    10 C

SAT Practice Questions - 3 & Answer Key

  1. Which of the following is equivalent to 5^{9}

    1. 5^{4}+5^{4}+5^{1}
    2. 5^{2} \times 5^{4} \times 5^{3}
    3. \frac{10^{9}}{2^{10}}
    4. (5^{4})^{5}
    5. \frac{5^{5}}{5^{4}}

  2. Which of the following is equivalent to \sqrt{289}

    1. 14
    2. 15
    3. 16
    4. 17
    5. 18

  3. Which of the following is a perfect square?

    1. 120
    2. 121
    3. 122
    4. 123
    5. 124

  4. Which of the following is equivalent to 3\sqrt{10}

    1. 3\sqrt{5} \times \sqrt{5}
    2. \sqrt{90}
    3. 3\sqrt{5} + 3\sqrt{2}
    4. 3\sqrt{5}+3\sqrt{5}
    5. \frac{3\sqrt{2}}{\sqrt{5}}

  5. Which of the following is equivalent to 10^{\frac{2}{5}}

    1. \sqrt[5]{5}
    2. \sqrt[5]{10}
    3. \sqrt[5]{20}
    4. \sqrt[5]{100}
    5. \sqrt[5]{1000}

  6. Which of the following fractions is equivalent to \frac{3}{6} \times \frac{2}{5}?

    1. \frac{6}{30}
    2. \frac{5}{30}
    3. \frac{5}{11}
    4. \frac{15}{12}
    5. \frac{9}{30}

  7. Which of the following expressions is equivalent to \frac{7}{6} \div \frac{5}{2}?

    1. \frac{7}{30}+\frac{2}{30}
    2. \frac{9}{6}+\frac{9}{5}
    3. \frac{7}{8}+\frac{5}{8}
    4. \frac{7}{6}+\frac{2}{5}
    5. \frac{1}{7}+\frac{2}{35}

  8. If 3^{x}=729, what is x^{3}?

  9. What is the value of ||4|-|-7||

    1. -11
    2. -3
    3. 0
    4. 3
    5. 11

  10. What is the value of (\sqrt{3}+\sqrt{5})^{2}-(\sqrt{8})^{2}

    1. 2\sqrt{15}
    2. \sqrt{15}
    3. 0
    4. 15
    5. 30

    Answer Key
    1 B
    2 D
    3 B
    4 B
    5 D
    6 A
    7 E
    8 125
    9 D
    10 A

Monday, July 4, 2011

SAT Practice Questions - 2

  1. Solve 15x-32=18-10x

    1. -14
    2. 10
    3. 14
    4. 2
    5. 50

  2. Solve \frac{x}{8}=\frac{x-2}{4}

    1. 12
    2. 4
    3. 6
    4. -\frac{1}{2}
    5. -6

  3. Which of the following are the factors of t^{2}+8t+16

    1. (t-4)(t-4)
    2. (t-8)(t-2)
    3. (t+8)(t+2)
    4. (t+1)(t+16)
    5. (t+4)(t+4)

  4. Solve for a in term of b, if 6a+12b=24

    1. 24-12b
    2. 2-\frac{1}{2}b
    3. 4-2b
    4. 24-18b
    5. 2b-4

  5. If ax+2b=5c-dx, what does x equal in terms of a, b, c, and d?

    1. 5c-d-2b-a
    2. a-d
    3. (5c-2b)(a-d)
    4. \frac{5c-d-2b}{a}
    5. \frac{5c-2b}{a-d}

  6. If (z-9)(z+3)=0, what are the two possible values of z?

    1. z=-9 abd z=3
    2. z=9 abd z=0
    3. z=0 abd z=-3
    4. z=9 abd z=-3
    5. z=-12 abd z=12

  7. If z^{2}-6z=16, which of the following could be a value of z^{2}+6z?

    1. -8
    2. 112
    3. 110
    4. 18
    5. 108

  8. If 3\sqrt{ a}-10=2, what is the value of a?

    1. 16
    2. 4
    3. 32
    4. 64
    5. 12

  9. Given \frac{(x+6)(x^{2}-2x-3)}{x^{2}+3x-18}=10, find the value of x.

    1. 18
    2. 4
    3. 12
    4. 9
    5. 12

  10. Solve the equation \frac{5x}{8}-\frac{3x}{5}=2.

    1. 40
    2. 80
    3. 160
    4. -80
    5. 20

    Answer Key
    1 D
    2 B
    3 E
    4 C
    5 E
    6 D
    7 B
    8 A
    9 D
    10 B

Saturday, July 2, 2011

CLEP Precalculus Practice Questions -1

    1. Evaluate the expression: 1000(2^{-1.5})

      1. 2828,427
      2. 2000.00
      3. 353.55
      4. 3000
      5. 350.50

    2. Evaluate the expression: \log_{49}7

      1. \frac{1}{4}
      2. \frac{1}{2}
      3. \frac{2}{5}
      4. \frac{1}{49}
      5. 7

    3. Place into standard form: (5+i)-(7-7i)

      1. -2+8i
      2. 2+8i
      3. 12+8i
      4. -2+6i
      5. 2-8i

    4. Find the domaine of the function: f(x)=\sqrt{-6x+12}

      1. x \geq 2
      2. x \geq 3
      3. x \leq -2
      4. x \leq -1
      5. x \leq 2

    5. What is the value of: 3\ln e^{6}

      1. 6
      2. 18
      3. 9
      4. 12
      5. 3

    6. What is the value of: \csc (150 deg)

      1. 0
      2. 1
      3. -1
      4. -2
      5. 2

    7. Solve the equation: x^{2}-10x+50=0

      1. 5+5i or 5-5i
      2. 2+5i or 2-5i
      3. 4+5i or 4-5i
      4. 1+5i or 1-5i
      5. 5+i or 5-i

    8. What is the value of x: \log_{10}x=-3

      1. 0.01
      2. 0.001
      3. 0.1
      4. 1
      5. 10

    9. Factor the expression: x^{2}-3ix-2

      1. (x+i)(x+2i)
      2. (x+i)(x-2i)
      3. (x-i)(x-2i)
      4. (-x-i)(x-2i)
      5. (x-1)(x-2)

    10. Identify the horizontal and vertical asymptotes for: \frac{5x^{2}}{x^{2}-9}

      1. y=5, x=-3, x=3
      2. y=-5, x=-3
      3. y=5, x=3
      4. y=5, x=-3
      5. y=-5, x=3, x=-3

    11. Answer Key
      1 C
      2 B
      3 A
      4 E
      5 B
      6 E
      7 A
      8 B
      9 C
      10 A

Friday, July 1, 2011

CLEP College Algebra Practice Questions -- Functions and their properties

  1. If f(x)=-x^{3}+2x+1 what is f(-3x)

    1. 27x^{3}-6x+1
    2. -27x^{3}-6x+1
    3. -27x^{3}+6x+1
    4. 27x^{3}-6x-1
    5. -3x^{3}-6x+1

  2. If f(x)=9x+3 then f^{-1}(x)=

    1. \frac{1}{9}x-\frac{1}{3}
    2. \frac{1}{3}+\frac{1}{9}
    3. 9x-3
    4. \frac{1}{3}x+1
    5. x-\frac{1}{9}

  3. If f(x,y)=\frac{x \log x}{y \log y} then f(8,2)=

    1. 4
    2. 24
    3. \frac{3}{2}
    4. \log 2
    5. 12

  4. \log_{5}(\frac{1}{125})

    1. \frac{1}{3}
    2. -\frac{1}{3}
    3. 5
    4. 3
    5. -3

  5. The function f is defined by f(x)=\frac{1}{1-x}. For what values of x is f(f(x)) undefined?

    1. \{0\}
    2. \{1\}
    3. \{-1,2\}
    4. \{0,1\}
    5. \{-1,0\}



  6. If f(x)=\frac{7x-5}{2}, find the solution set for f(x)>3x

    1. \{x/ x>5 \}
    2. \{x/ x<5 \}
    3. \{ x/ x>3 \}
    4. \{ x/ x \leq -3 \}
    5. None of the above

  7. If f(x)=3x+7 and g(x)=2x-1, what is f(g(1))?


  8. Find the equation for the line passing through (4,2) and (-1,3)

    1. 5y-x=14
    2. 5y+x=-14
    3. -5y+x=14
    4. y+5x=14
    5. 5y+x=14

  9. Solve 2^{7x}=4^{2x-1}

    1. \frac{2}{3}
    2. \frac{3}{2}
    3. -\frac{2}{3}
    4. 3
    5. \frac{2}{3}

  10. Find \log_{3} 81
Answer Key
1 A
2 A
3 E
4 E
5 D
6 A
7 10
8 E
9 C
10 4